Electronic Supplementary Information for

Bioorthogonal Assembly Based on Metallophilic Interactions for

Selective Imaging and PDT Treatment of Cancer Cells

Xuwen Da,^{a,b} Fei-Hu Yu,^{a,b} Chao Zhang,^{a,b} Zhanhua Wang,^{a,b} Yao Jian,^{a,b} Yuanjun Hou,^a Yong Chen, *^{a,b}

Xuesong Wang, *a,b Qianxiong Zhou*a

^{a.} Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy

of Sciences, Beijing 100190, P. R. China.

^{b.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding Author(s): chenyong@mail.lpc.ac.cn, xswang@mail.ipc.ac.cn, zhouqianxiong@mail.ipc.ac.cnx

Figure S1 DLS result of HA-C3 NPs.

Figure S2 Zeta potentials of HA and HA-C3 NPs.

Figure S3 STEM image and EDS elemental mapping images of Au, C, O and N for HA-C3 NPs.

Figure S4 DLS result of HA-C3+A5 NPs.

Figure S5 (a) Absorption spectra of HA-C3 and HA-C3+A10 NPs; (b) Emission spectra of A10, HA-C3 NPs and HA-C3+A10 NPs ($\lambda_{ex} = 375$ nm).

Figure S6 Absorption and emission spectral changes of HA-C3+A5 in PBS, Tris-HCl and DMEM during different times.

Figure S7 Absorption and emission spectral changes of HA-C3+A10 in PBS, Tris-HCl and DMEM during different times.

Figure S8 Luminescence lifetimes of HA-C3+A5 (left) and HA-C3+A10 (right) NPs.

Figure S9 ${}^{1}O_{2}$ generation of Ru(bpy)₃²⁺ (left) and HA-C3+A10 NPs (right) using SOSG as a fluorescence probe upon light irradiation at 470 nm (22.5 mW/cm²). The absorbance at 470 nm was ajusted to the same before adding SOSG.

Figure S10 EPR spectra of (a) HA-C3+A5 NPs and (b) HA-C3+A10 NPs using TEMP (50 mM) as the ${}^{1}O_{2}$ spin trapping agent in the dark or upon light irradiation at 470 nm (22.5 mW/cm²); (c) Comparison of the EPR signal intensities of HA-C3+A5 and HA-C3+A10 NPs under the same conditions. The concentration of HA-C3+A5 or HA-C3+A10 NPs was 10 μ M based on C3 or A10.

Figure S11 CLSM images of HA-C3 NPs and A10 sequentially treated A549 and L-O2 cells. The concentrations of HA-C3 NPs (based on C3) and A10 were 10 μ M.

Figure S12 CLSM images of A549 cells sequentially treated with bare C3 and A5. The concentrations of C3 and A5 were 10 μ M.

Figure S13 Time-delayed CLSM images (in red boxes) of the A549 cells treated sequentially by HA-C3 NPs and A5 (λ_{ex} = 488 nm). The concentration of HA-C3 NPs (based on C3) and A5 was 10 μ M.

Figure S14 Time-delayed CLSM images (in red boxes) of the A549 cells treated sequentially by HA-C3 NPs and A10 (λ_{ex} = 488 nm). The concentration of HA-C3 NPs (based on C3) and A10 was 10 μ M.

Figure S15 STEM image and EDS elemental mapping images of O, N, Cu, C, Cl and Au of the cell slice treated by HA-C3 NPs and A5.

Figure S16 TEM images of A549 cells incubated with PBS.

Figure S17 STEM image and EDS elemental mapping images of the A549 cell slice treated by PBS.

Figure S18 DCFH-DA assay for ROS generation in the HeLa and L-O2 cells treated with PBS, HA-C3 NPs, A5 or HA-C3+A5 (10 μ M based on C3 or A5) in the dark.

Figure S19 DCFH-DA assay for ROS generation in the HeLa cells treated with PBS, HA-C3 NPs, A10, or HA-C3+A10 (10 μ M based on C3 or A10) in the dark or upon irradiation at 470 nm (22.5 mW/cm² for 30 min).

Figure S20 DCFH-DA assay for ROS generation in the L-O2 cells treated with PBS, HA-C3 NPs, A10 or HA-C3 NPs and A10 (10 μ M based on C3 or A10) in the dark or upon irradiation at 470 nm (22.5 mW/cm² for 30 min).

Figure S21 Cell viability of HA-C3 NPs, A5, and HA-C3+A5 treated A549 and HeLa cells in the dark or upon irradiation at 470 nm for 30 min (22.5 mW/cm²).

Figure S22 Cell viability of HA-C3 NPs, A5, and HA-C3+A5 treated L-O2 and IOSE80 cells in the dark or upon irradiation at 470 nm for 30 min (22.5 mW/cm²).

Figure S23 Cell viability of A549 cells sequentially treated with bare C3 and A5 in the dark or upon irradiation at 470 nm for 30 min (22.5 mW/cm²).

Figure S24 Cell viability of HA-C3+A10 treated A549 and L-O2 cells in the dark or upon irradiation at 470 nm for 30 min (22.5 mW/cm²).

Figure S25 CLSM images of HA-C3 NPs and A5 (30 μ M) sequentially treated A549 cells in the dark or upon light irradiation (470 nm, 22.5 mW/cm²).