Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

SUPPORTING INFORMATION

Symmetry-Breaking Phase Transitions, Dielectric and Magnetic properties of Pyrrolidinium-Tetrahalidocobaltates

Martyna Ksiądzyna^(a), Vasyl Kinzhybalo^(b), Alina Bieńko^(a), Wojciech Medycki^(c), Ryszard Jakubas^(a), Cyril Rajnák^(d), Roman Boča^(d), Andrew Ozarowski^e, Mykhaylo Ozerov^e, Anna Piecha-Bisiorek^{(a)*}

 ^(a) Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
 ^(b) Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
 ^(c)Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
 ^(d)Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
 ^(e) National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310,United States

1. Experimental

|--|

Elements	C (%)	H (%)	N (%)
Calculation for PCC	27.85	5.84	8.12
Found for PCC	28.74	5.98	8.50
Calculation for PCB	18.38	3.86	5.36
Found for PCB	18.75	3.86	5.47

Figure S1. X-ray diffraction pattern at 298 K of (a) PCC; (b) PCB.

2. Thermal properties

Figure S2. The results of the simultaneous TGA/DSC analyses for (a) **PCC** (sample mass $m = 14.2541 \text{ mg } 2 \text{ K} \cdot \text{min}^{-1}$); (b) **PCB** (sample mass $m = 13.7640 \text{ mg}, 2 \text{ K} \cdot \text{min}^{-1}$)

3. Crystal structure analysis

Crystal data						
Empirical formula	C ₈ H ₂₀ N ₂	2CoCl ₄	C ₈ H ₂₀ N ₂ CoBr ₄			
Formula weight (g mol-1)	344.99	344.99	522.83	522.83		
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic		
Space group	P21/c	Pna2 ₁	P2 ₁ /n	Pna2 ₁		
Temperature (K)	290	350	295	400		
Unit cell dimensions						
a (Å)	32.874 (8)	11.643 (5)	8.781 (3)	11.999 (5)		
b (Å)	8.885 (3)	16.262 ()	11.383 (4)	16.686 (7)		
c (Å)	21.428 (5)	8.420 ()	16.979 (5)	8.728 (4)		
β (°)	90.02 (3)	90	93.71 (3)	90		
V (Å ³)	6259 (3)	1594.2 (12)	1693.6 (10)	1747.5 (13)		
Z	16	4	4	4		
D _{calc.} (g cm ⁻³)	1.464	1.437	2.050	1.987		
μ [mm ⁻¹]	1.76	1.72	10.43	10.11		
F(000)	2832	708	996	996		
Crystal size	0.21×0.14×0.12	0.49×0.16×0.13	0.29×0.19×0.13	0.35×0.14×0.11		
Data collection and Refinemen	t					
Diffractometer		Xcalibur with At	las CCD camera			
Monochromator		Graphit	ε ΜοΚα			
Radiation type, wavelength	ΜοΚα, 0.71073	ΜοΚα, 0.71073	ΜοΚα, 0.71073	ΜοΚα, 0.71073		
λ (Å)						
Absorption correction	Analytical					
	CrysAlis PRO 1.171.38.34a (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a					
	multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S.					
	(1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in					
		SCALE3 ABSPAC	K scaling algorithm.			
Reflections	68870/155515/6666	7562/3537/824	11375/3971/1890	16707/4107/772		
collected/independent/	0.059	0.036	0.035	0.077		

Table S2. Experimental data for PCC and PCB.

0.077 observed [R(int)] 542 136 136 136 Parameters 0.97 0.95 1.02 0.81 Goodness-of-fit on F^2 $R[F^2 > 2\sigma(F^2)], wR(F^2)$ 0.055, 0.142 0.093, 0.426 0.056, 0.143 0.081, 0.299 0.46, -0.40 0.24, -0.36 1.01, -0.99 0.31, -0.34 $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å⁻³) 2082869 2082870 CCDC 2082868 2082871

Computer programs: CrysAlis PRO 1.171.38.34a (Rigaku OD, 2015), CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015), SHELXS (Sheldrick, 2008), ShelXT (Sheldrick, 2015), SHELXL (Sheldrick, 2015), Olex2 (Dolomanov et al., 2009).

Table S3. Selected	geometric	parameters	(Å, °) for PCC at 290 K.
--------------------	-----------	------------	-------	----------------------------

Co1—Cl1	2.250 (2)	Co1B—Cl1B	2.255 (2)
Co1—Cl2	2.2602 (19)	Co1B—Cl2B	2.2704 (19)
Co1—Cl3	2.2856 (18)	Co1B—Cl3B	2.2815 (19)
Co1—Cl4	2.2672 (19)	Co1B—Cl4B	2.2641 (19)
Co1A—Cl1A	2.248 (2)	Co1C—Cl1C	2.2542 (19)
Co1A—Cl3A	2.2832 (18)	Co1C—Cl2C	2.2726 (19)
Co1A—Cl2A	2.254 (2)	Co1C—Cl4C	2.2654 (19)
Co1A—Cl4A	2.2651 (19)	Co1C—Cl3C	2.2805 (19)
Cl1—Co1—Cl2	114.14 (8)	Cl1B—Co1B—Cl2B	107.56 (8)
Cl1—Co1—Cl3	108.16 (8)	Cl1B—Co1B—Cl3B	109.04 (8)

Cl1—Co1—Cl4	108.26 (8)	Cl1B—Co1B—Cl4B	113.77 (8)
Cl2—Co1—Cl3	108.07 (8)	Cl2B—Co1B—Cl3B	104.51 (7)
Cl2—Co1—Cl4	112.27 (8)	Cl4B—Co1B—Cl2B	113.02 (9)
Cl4—Co1—Cl3	105.52 (8)	Cl4B—Co1B—Cl3B	108.48 (8)
Cl1A—Co1A—Cl3A	109.00 (8)	Cl1C—Co1C—Cl2C	107.19 (7)
Cl1A—Co1A—Cl2A	112.87 (8)	Cl1C—Co1C—Cl4C	112.96 (8)
Cl1A—Co1A—Cl4A	108.12 (8)	Cl1C—Co1C—Cl3C	109.23 (8)
Cl2A—Co1A—Cl3A	109.12 (8)	Cl2C—Co1C—Cl3C	104.11 (7)
Cl2A—Co1A—Cl4A	112.73 (9)	Cl4C—Co1C—Cl2C	113.51 (8)
Cl4A—Co1A—Cl3A	104.63 (7)	Cl4C—Co1C—Cl3C	109.40 (8)

Table S4. Hydrogen-bond geometry (Å, °) for PCC at 290 K.

D —Н···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —Н··· <i>A</i>
N1—H1A···Cl1	0.89	2.85	3.394 (5)	121
N1—H1A····Cl3	0.89	2.53	3.309 (6)	146
N1—H1 B ····Cl2 C^{i}	0.89	2.41	3.247 (6)	158
N6—H6A…Cl2	0.89	2.32	3.195 (7)	168
N6—H6 <i>B</i> ····Cl2 <i>C</i> ⁱⁱ	0.89	2.84	3.571 (8)	141
N6—H6 <i>B</i> ····Cl3 <i>C</i> ⁱⁱ	0.89	2.65	3.352 (6)	137
N1A—H1AA····Cl1A	0.89	2.83	3.342 (6)	118
N1A— $H1AA$ ····C $I3A$	0.89	2.48	3.275 (7)	148
$N1A$ — $H1AB$ ····Cl4 A^{iii}	0.89	2.48	3.293 (7)	152
$C4A$ — $H4AB$ ···· $Cl2C^{iv}$	0.97	2.83	3.655 (11)	143
N6A—H6AA····Cl3A ^{iv}	0.89	2.59	3.315 (6)	139
N6A—H6AB…Cl2A	0.89	2.29	3.175 (8)	173
N1B—H1BA····Cl1B	0.89	2.82	3.365 (5)	121
N1 <i>B</i> —H1 <i>BA</i> ····Cl3 <i>B</i>	0.89	2.56	3.314 (7)	144
N1B—H1BB····Cl2 B^{v}	0.89	2.42	3.263 (6)	158
N6B—H6BA····Cl2B ^{vi}	0.89	2.86	3.593 (8)	141
N6B—H6BA····Cl3B ^{vi}	0.89	2.66	3.377 (7)	138
N6B—H6BB…Cl4B	0.89	2.33	3.197 (8)	165
C10B—H10F…Cl3B	0.97	2.92	3.795 (11)	150
N1C—H1CA····Cl1C	0.89	2.83	3.369 (5)	121
N1C— $H1CA$ ···Cl3C	0.89	2.53	3.306 (7)	146
N1C—H1CB····Cl4 ^{vii}	0.89	2.47	3.285 (7)	152
C4 <i>C</i> —H4 <i>CB</i> ····Cl2 <i>B</i>	0.97	2.72	3.597 (11)	151
N6C—H6CA····Cl4C	0.89	2.30	3.165 (7)	164
N6C—H6CB····Cl3 ^{viii}	0.89	2.47	3.280 (6)	152

 $\frac{1}{\text{Symmetry codes: (i) } x, y-1, z; (ii) } x, -y+3/2, z+1/2; (iii) -x+1, -y+2, -z+1; (iv) -x+1, y-1/2, -z+1/2; (v) -x+2, -y+1, -z; (vi) -x+2, y-1/2, -z+1/2; (vii) x, y+1, z; (viii) x, -y+1/2, z-1/2.$

Table S5. Selected geometric parameters (Å, °) for PCC at 350 K.

Co1—Cl3	2.240 (6)	Co1—Cl2	2.194 (18)
Co1—Cl1	2.255 (6)	Co1—Cl4	2.287 (16)
Cl3—Co1—Cl1	108.6 (3)	Cl2—Co1—Cl3	106.6 (8)
Cl3—Co1—Cl4	111.5 (9)	Cl2—Co1—Cl1	112.7 (6)
Cl1—Co1—Cl4	105.2 (6)	Cl2—Co1—Cl4	112.1 (5)

Table S6. Hydrogen-bond geometry (Å, °) for PCC at 350 K.

<i>D</i> —Н··· <i>A</i>	<i>D</i> —Н	Н…А	D····A	<i>D</i> —Н··· <i>A</i>	
N1—H1B···Cl1	0.89	2.78	3.43 (3)	131	
C2— $H2A$ ···Cl4 ⁱ	0.97	2.79	3.57 (4)	137	
C9—H9 <i>B</i> ···Cl3 ⁱⁱ	0.97	2.74	3.60 (6)	149	
C10—H10A····Cl4 ⁱⁱⁱ	0.97	2.74	3.66 (6)	158	
N6—H6 <i>B</i> ····Cl2	0.89	2.70	3.44 (4)	141	
Symmetry codes: (i) $-x+1$, $-y+1$, $z-1/2$; (ii) $-x$, $-y+1$, $z+1/2$; (iii) $-x$, $-y+1$, $z-1/2$.					

Table S7. Selected geometric parameters (Å, °) for **PCB** at 295 K.

Br1—Co1	2.3921 (16)	Co1—Br2	2.4001 (15)
Br4—Co1	2.3867 (15)	Co1—Br3	2.3963 (16)
Br1—Co1—Br2	109.00 (5)	Br4—Co1—Br2	109.95 (6)
Br1—Co1—Br3	110.99 (6)	Br4—Co1—Br3	109.10 (6)
Br4—Co1—Br1	111.79 (5)	Br3—Co1—Br2	105.84 (6)

Table S8. Hydrogen-bond geometry (Å, °) for PCB at 295 K.

<i>D</i> —Н··· <i>A</i>	<i>D</i> —Н	Н…А	D····A	D —Н···A
N1—H1A····Br2 ⁱ	0.89	2.72	3.538 (8)	153
N1—H1 <i>B</i> ···Br1	0.89	2.82	3.423 (6)	127
N1—H1 <i>B</i> ···Br3	0.89	2.93	3.672 (8)	142
N6—H6A····Br3 ⁱⁱ	0.89	2.76	3.583 (11)	154
N6—H6 <i>B</i> ···Br4	0.89	2.80	3.510 (11)	138
C10—H10 A ····Br2 ⁱⁱ	0.97	2.79	3.700 (14)	157
C10—H10 <i>B</i> ····Br4	0.97	2.95	3.663 (18)	131
C9—H9A····Br3 ⁱⁱⁱ	0.97	2.99	3.950 (18)	173
C9—H9 B ···Br1 ^{iv}	0.97	3.09	3.89 (2)	141

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) x, y-1, z.

Table S9. Selected geometric parameters (Å, °) for PCB at 400 K.

Co1—Br1	2.374 (4)	Co1—Br2	2.384 (12)
Co1—Br3	2.386 (4)	Co1—Br4	2.334 (12)
Br1—Co1—Br3	110.60 (16)	Br4—Co1—Br1	110.1 (4)
Br1—Co1—Br2	109.1 (4)	Br4—Co1—Br3	110.2 (4)
Br2—Co1—Br3	105.6 (4)	Br4—Co1—Br2	111.1 (2)

Table S10. Hydrogen-bond geometry (Å, °) for PCB at 400 K.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	Н…А	D····A	D —Н···A			
N1—H1 <i>B</i> ···Br1	0.89	3.08	3.69 (4)	128			
C2—H2 A ···Br4 ⁱ	0.97	3.05	3.72 (5)	127			
N6—H6 <i>B</i> ···Br2	0.89	2.80	3.52 (3)	139			
C9—H9 B ···Br3 ⁱⁱ	0.97	3.25	3.95 (9)	131			
Summation and (i)							

Symmetry codes: (i) -x+1, -y+1, z-1/2; (ii) -x, -y+1, z+1/2.

4. Optical properties

Figure S13. Evolution of domain structure of PCC. The figure contains an approximate temperatures.

Between RT and 353 K the PCC sample is monodomain, then at approx. 353.4 K the domain walls appear. In Phase I (above 354 K), the sample becomes mono-domain. This means that the Phase I can be considered as prototypical/paraelastic one. During the cooling process, below 347 the evolution of the phase front and appearing of the ferroelastic domain structure is well visible. The appearance of the domain structure only in the close vicinity of PT (I \rightarrow II) proves that strong distortion of the crystal lattice initiates the formation of domains. Below 347.5 K the ferroelastic domains disappeared in spite of the fact that over the all Phase (II) the compound is ferroelastic.

5. Proton Magnetic Resonance (second moment (M₂)).

The temperature dependence of the second moment of the proton resonance lines, M_2 , of **PCB** and **PCC** are shown in Figure S3. For **PCB** the second moment values decrease from about 41 G² at 107K to below 3 G² at 385 K. Also for **PCC** is observed the narrowing of ¹H NMR line from about 54 G² at 107 K to plateau below 4 G² at 380 K. These both high values of the second moment at the lowest temperatures confirms the influence of the present of the paramagnetic ⁵⁹Co(II) in crystal structure of both studied compounds. This fact denotes not only the presence of the ¹H-⁵⁹Co interaction next to the ¹H-¹H interaction¹ but the strongly quadrupolar nature additionally disturb the ¹H-⁵⁹Co couplings increasing the width of measured NMR line.²

Compound	РСВ	РСС
E _{a1} [kJ/mol]	4.45	4.45
$\tau_{01}[s]$	3.75 10-10	3.75 10-10
K ₁ [Hz ²]	1.75 1011	4.76 1011
E _{a2} [kJ/mol]	3.35	3.35
τ ₀₂ [s]	3.8 10-11	3.8 10-11
K ₂ [Hz ²]	1.26 10 ¹²	1.26 10 ¹²

Table S11 Activation energies, correlation times and motional constants evaluated for PCB and PCC.

Figure S12. Temperature dependence of ¹H NMR second moment of PCB and PCC.

The calculations of M₂ based on the crystal structures of compounds containing the pyrrolidinium cations gave the values ca. 18-20 G² in the rigid state. In Figure S3 the second moment drops to such values only above 200 K where the domination of quadrupolar interaction gradually vanishes. At PT temperatures there are visible a distinct change in slopes or sudden drop of the M_2 values. In the case of PCC around 257 PT PCC a of small drop *ca*. 3 G² is visible. In turn above 353 K the plateau begins without any drop in M_2 values. It is the opposite for PCB. In case of PCC the reduction of M_2 from 13 G² to 4 G² in temperature range 257 K - 353 K has been fitted with standard BBP formula and the calculated theoretical solid line is drawn in Figure S12. For the chosen reduction of second moment the found activation energy is to be 54.9 kJ·mol⁻¹ with the correlation time of 4.36 10⁻¹⁴ s. Considering the result of this numerically analyzed reduction of the second moment of ¹H NMR line it may be concluded that the pyrrolidinium cation in this temperature range is probably performing packing motion of the pyrrolidinium cation between the twisted and envelope conformations or rotations about the pseudo-C5 axis. At the highest temperatures (above 350-360 K) the isotropic rotations and cationic self-diffusion are expected taking into account the previous results for compounds containing in the structure pyrrolidinium.³⁻⁶

References:

- 1 A. Abragam, The Principles of Nuclear Magnetism. Oxford University Press, Oxford, 1961.
- 2 J. D. Epperson, Li-June Ming, B. D. Woosley, G. R. Baker, and G. R. Newkome, *Inorg. Chem.*, 1999, **38**, 4498-4502.
- 3 C. P. Slichter, Principles of Magnetic Resonance, Springer Ser. Solid-State Sci., Berlin, 1990.
- 4 D. Kruk, Theory of Evolution and Relaxation of Multi-Spin Systems: Application to Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR), Arima Publishing, UK, 2007.
- 5 J. Kowalewski, D. Kruk and G. Parigi, *Adv. Inorg. Chem.*, 2005, 57, 41-104.
- 6 D. Kruk and J. Kowalewski, *Mol. Phys.*, 2003, **101**, 2861-2874.

6. HF EPR spectroscopy

Magnetic Induction, Gaus

Figure S14. High-field EPR spectra of PCC recorded at 5 K.

7. Magnetic properties

Figure S15. Temperature evolution of the AC susceptibility components for PCC at $B_{DC} = 0.2$ T.

<i>T</i> /K	$R(\chi')$	$R(\chi'')$	χs	Хlf	$lpha_{ m LF}$	$ au_{ m LF}$	$\chi_{ m HF}$	$lpha_{ m HF}$	$ au_{ m HF}$	$x_{\rm LF}$	$x_{\rm HF}$
	/%	/%				/ s			/10 ⁻⁶ s		
1.8	0.51	3.2	4.37(8)	5.6(9)	.49(17)	3.4	12.4(8)	.17(1)	342(7)	.16	.84
2.0	0.16	1.5	3.94(8)	5.5(3)	.54(4)	2.3	11.5(2)	.24(1)	129(3)	.21	.79
2.2	0.36	3.6	3.9(5)	5.6(9)	.60(8)	2.4	10.9(5)	.30(3)	50(9)	.25	.75
2.4	0.39	6.7	4.5(11)	5.9(16)	.60(12)	2.2	10.1(5)	.35(6)	25(15)	.26	.74
2.6	0.31	9.1	4.8(23)	5.9(28)	.60(15)	3.7	9.5(6)	.44(10)	10	.26	.74
2.8	0.23	9.9	4.8	5.7	.60	2.5	8.7(4)	.49(15)	3.2	.22	.78

Table S12. Temperature dependence of AC susceptibility parameters for PCC at $B_{DC} = 0.2$ T ^a

^a $\chi_{\rm S}$ – adiabatic susceptibility, χ_i – isothermal susceptibility, α_i – distribution parameter, τ_i – relaxation time, x_i – mole fraction for the *i*-th relaxation channel (LF or HF); $R(\chi')$ and $R(\chi'')$ – discrepancy factors of the fit. Standard deviations of the varied parameters in parentheses.