Supporting Information

Popcorn-like Co₃O₄ Nanoparticles Confined in Three-Dimensional Hierarchical N-doped carbon nanotubes Networks as Highly Efficient Trifunctional Electrocatalyst for Zinc-Air Batteries and Water Splitting Device

Xiuyun Yao ^{a,1}, Xueying Wang ^{a,1}, Lixin Sun ^a, Ling Li ^{a,*}, Erjun Kan ^b, Bo Ouyang ^{b,*}, Wenming Zhang ^{a,*}

^a National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices,
 College of Physics Science and Technology, Hebei University, Baoding 071002, China.
 ^b MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,
 Nanjing University of Science and Technology, Nanjing 210094, China.

1 These authors contributed equally.

1. Computational Simulation Process

Density functional theory (DFT) calculations were performed via the Vienna Abinitio Simulation Package (VASP). The cut-off energy for the plane-wave basis was 520 eV. K-point mesh of $2\times2\times1$ was applied to all structures. The geometry optimizations were performed until convergence criterion for the total energy and force were reduced below 10-5 eV and 0.01 eV Å⁻¹. The vacuum layer of 15 Å was added along the normal direction to avoid spurious interactions between adjacent structures. Long-range Van Der Waals (VDW) interactions were treated based on the empirical correction scheme of Grimme (DFT+D3).

The binding energy of absorbates including H, OH, O and OOH on substrates can be defined as:

$$E_{ads} = E_{substrate + adsorbate} - (E_{substrate + Eadsorbate})$$
⁽⁵⁾

In which E_{ads} was the absorbing energy between the catalyst and adsorbate; $E_{substrate+adsorbate}$ referred to the total energy of catalyst surface with the adsorbate, while $E_{substrate}$ and $E_{adsorbate}$ stand for the total energy of the catalyst surface and adsorbates.

In present work, the Gibbs free energy change (ΔG) of each elementary step was obtained by

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{6}$$

Where the ΔE denotes the adsorption energy, ΔE_{ZPE} and ΔS are the changes of zeropoint energy and entropy, and the temperature T is set to 300 K.

2. Supplementary Figures

Fig. S1 TEM images of NGC@Co/NCNTs/CNF. (a) a niblet-like branch tip of NGC@Co/NCNTs/CNF and (b) the corresponding HR-TEM image of the tip.

Fig. S2 SEM images of (a) ZIF-8/ZIF-67 NPs catalyst and (b) Co_3O_4 NPs electrocatalyst.

Fig. S3 XPS survey spectra of NAC@Co₃O₄/NCNTs/CNF.

Fig. S4 Pore size distribution for Co_3O_4 NPs, NGC@Co/NCNTs/CNF and NAC@Co₃O₄/NCNTs/CNF electrocatalysts.

Fig. S5 Rotating ring-disk electrode (RRDE) voltammograms for NAC@ Co_3O_4 /NCNTs/CNF in O_2 -saturated 0.1 M KOH at 1600 rpm.

Fig. S6 Current-time (i-t) chronoamperometric responses of NGC@Co/NCNTs/CNF and Pt/C at 0.4 V for 30 h in O_2 saturated 0.1 M KOH solution at 1600 rpm.

Fig. S7 (a-c) CVs measured in 1 M KOH at scan rates from 20 to 80 mV s⁻¹ for Co₃O₄ NPs, NGC@Co/NCNTs/CNF and NAC@Co₃O₄/NCNTs/CNF electrocatalysts.

Fig. S8 (a-d) CVs measured in 1 M KOH at scan rates from 20 to 80 mV s⁻¹ for Co₃O₄ NPs, NGC@Co/NCNTs/CNF, NAC@Co₃O₄/NCNTs/CNF and Pt/C electrocatalysts, respectively.

Fig. S9 Atomic configurations of NAC@Co₃O₄/NCNTs/CNF for HER.

Fig. S10 Atomic configurations of NGC@Co/NCNTs/CNF for OER/ORR with different adsorption states toward intermediates.

Fig. S11 Atomic configurations of NGC@Co/NCNTs/CNF for HER.

3. Supplementary Table

Table	S 1	BET	surface	area,	total	pore	volume,	micropore	volume	and	adsorp	tion
average	e	pore	widt	h c	of	Co ₃ O ₄	4 NPs,	NGC@	Co/NCN	Ts/C	NF	and

NAC@Co₃O₄/NCNTs/CNF.

Catalysts	BET surface area (m² g⁻¹)	total pore volume (cm³ g⁻¹)	Adsorption average pore width (nm)	Reference	
Co ₃ O ₄ NPs	44	0.19	17.36	This work	
NGC@Co/NCNTs/CNF	261	0.19	2.95	This work	
NAC@Co ₃ O ₄ /NCNTs/CNF	309	0.23	2.96	This work	
Co ₃ O ₄ @NC	35.22	-	-	Chem. Eng. J. 2021, 424, 130400	
Co ₃ O ₄ @NCs	303.9	-	4.9	Nano Energy 2020, 77, 105200	
Co-NC	249.9	-	-	Chem. Eng. J. 2021, 419, 129619	
ZrO2 NT/Co ₃ O ₄	33.28	-	-	Appl. Catal. B- Environ. 2021, 283, 119653	
Co ₃ O _{3.87} F _{0.13}	70.4	0.134	3.43	Appl. Catal. B- Environ. 2021, 281, 119535	
CoPNC@NFP	247	-	5	Chem. Eng. J. In Press	
Ru/Co ₃ O ₄ NWs	49.86	-	-	Nano Energy 2021, 85, 105940	
Co3O/NCNTs/3D	361.5	-	11.1	Chem. Eng. J. 2020, 381, 122681	
Co ₂ P/CoP NAs	20.25	-	-	Nano-Micro Lett. 2020, 12, 154	
Co-N ₄ /NC	257.91	-	-	Nano-Micro Lett. 2021, 13, 60	
FeCo/Se-CNT	23.51	-	-	Nano Lett. 2021, 21, 5, 2255	
PtCo ₂ /Zn ₆ Co	600	-	3	ACS Nano 2020, 14, 13069	
Co_3O_4/Co -Fe oxide DSNBs	43.3	-	-	Adv. Mater. 2018, 30, 1801211	
Co ₃ O ₄ C-NA	251	-	-	J. Am. Chem. Soc. 2014, 136, 13925	
CoO@Co ₃ O ₄ /NSG-750	70	0.22	-	ACS. Appl. Mater. Inter. 2018, 10, 7180	
Co ₃ O ₄ -NWs	57	-	4.31	ChemElectroChem 2018, 5, 2181	
Co ₃ O ₄ NW	22	-	3.4	Adv. Energy Mater. 2014, 4, 1301389	

Table S2 Performance of important non-precious metal based electrocatalysts for ORR, OER, HER in alkaline environment. η is the over potentials to deliver a –10 mA cm⁻² current density for OER, HER. All of the catalytic electrodes for OER, HER in 1 M KOH, and 0.1M KOH for ORR without special instructions.

	ORF	R	OER		H	ER		
Catalysts	Diffusion- limiting current density (mA cm ⁻²)	Tafel slope (mV dec⁻ ¹)	η (mV)	Tafel slope (mV dec ^{_1})	η (mV)	Tafel slope (mV dec ^{_1})	Reference	
NAC@Co ₃ O ₄ /NCNTs/CNF	-5.6	67	368	56	76	173	This work	
NGC@Co/NCNTs/CNF	-5.7	111	390	82	193	209	This work	
Co ₃ O ₄ NPs	-1.9	-	410	76	380	245	This work	
Pt/C	-5.7	112	-	-	40	106	This work	
RuO ₂	-	-	320	73	-	-	This work	
NCN-1000-5	-6.43	86	410ª	142ª	90 ^b	43 ^b	Energy Environ. Sci. 2019, 12, 322	
Co/CNFs	-5.7	-	320	79	190ª	66ª	Adv. Mater. 2019, 31, 1808043	
NOGB-800	-5.5		400	90.5	220	98	Adv. Energy Mater. 2019, 1803867	
CoSA + Co ₉ S ₈ /HCNT	-6.3	30	330ª	21ª	250	101	Small 2020, 1906735	
Fe ₃ C-Co/NC	-5.5	-	340	-	238	-	Adv. Funct. Mater. 2019, 29, 1901949	
W ₂ N/WC	-5.0	58.73	320	122.8	148.5	47.4	Adv. Mater. 2020, 32, 1905679	
Co/CNFs	-5.8		320	79	190	66	Adv. Mater. 2019, 31, 1808043	
FeCo/Co ₂ P@NPCF	-5.0	62	330ª	61ª	260	120	Adv. Energy Mater. 2020, 1903854	
C ₆₀ -SWCNT	-1.75	-	460ª	46.7ª	400ª	120.8ª	J. Am. Chem. Soc. 2019, 141, 11658	
Cu-14-Co ₃ Se ₄ /GC	-4.0	56	280ª	111ª	166	168	ACS Catal. 2019, 9, 10761	
N,P-HCNF-8	-5.1	47	320ª	248ª	550ª	161ª	Nano Energy 2019, 64, 103879	
TiO ₂ C@CN _{x,950}	-5.0	-	270ª	69ª	255ª	60ª	Appl. Catal. B-	

							Environ. 2019, 248, 366
CoO _x -NeC/TiO ₂ C (22.7%)	-6.3	-	350	75	368ª	134ª	J. Power. Sources. 2019, 414, 333
15% PANI/ZIF-67	-4.6	-	330	41	425	123	Nano Energy 2018, 45, 127
NB-CN	-4.8	65	390ª	-	175.3	-	Nano Energy 2017, 42, 334
GO-PANi31-FP	-5.5	-	570ª	136ª	520ª	-	Angew. Chem. Int. Ed. 2016, 55, 13296
Co₃O₄/NRGO_30	-3.0°	61°	410	76	-	-	ChemElectroChem. 2018, 5, 483
NC-Co ₃ O ₄ -90	-12.8°	-	358	-	-	-	Adv. Mater. 2017, 29, 1704117
Co/Co ₃ O ₄ @PGS,	-5.9	52.6	350ª	76.1ª	-	-	Adv. Energy Mater. 2018, 8, 1702900
MCO@NCNTs	-6.0	121	470ª	106	-	-	ChemSusChem. 2018, 11, 1295
CoSAs@CNTs	-	99	410	85	-	-	ACS. Appl. Energy. Mater. 1, 3283
CNF@Zn/CoNC	-5.8	43.3	470ª	124ª	-	-	Small 2018. 14, 1704207
3D-CNTA	-4.2	-	360	89	185	135	Nano Energy 2017, 39, 626
Mo-N/C@MoS ₂	-5	-	390ª	72ª	117	64.3	Adv. Funct. Mater. 2017, 27, 1702300
echo-MWCNTs	-	-	360	41	-	-	J. Am. Chem. Soc. 2015, 137, 2901
Co₃O₄/NSG-650	-6	63	460ª	367ª	-	-	ACS. Appl. Mater. Inter. 2018, 10, 7180
Co@Co ₃ O _{4/} NC-2	-4.2	-	435ª	-	-	-	Appl. Surf. Sci. 2018, 427, 319
Co₃O₄/MnO₂.CNTs-350	-6.2	-	360ª	-	-	-	Environ. 2017, 2, 316
NiMo ₃ S ₄	-	-	-	-	257	98	Angew. Chem. Int. Ed. 2016, 55, 15240
Co@NC-3/1	-4.7	-	340	85	-	-	Adv. Energy Mater. 2018, 8, 1702048
NGO/Ni7S ₆	-	-	380ª	45ª	370	145.5	Adv. Funct. Mater. 2017, 27, 1700451.

			310	70	115	66	J. Am. Chem. Soc.
COF/INCINITE	-	-	510	70	115	00	2018, 140, 2610
			200				Energy Environ.
	-	-	290	-	-	-	Sci. 2015, 8, 2347
			420	113.10	262	97.42	Nano Energy 2018,
FO-M/M-N-CNF3	-	-	420				51, 286
	-5.8	_	410	00	240	12	Nano Energy 2017,
	-5.0	-	410	55	240	72	32, 247
D-Co@CNG	-4.6	83	360	_	205	95	J. Mater. Chem. A.
D-00@0110	-1.0	00	500	-	200	55	2017, 5, 20882
							ACS. Appl. Mater.
CoFe LDH-F	-	-	270	47	255	95	Inter. 2016, 8,
							34474
							ACS. Appl. Energy.
MNG-CoFe	-4	-	390	-	135	-	Mater. 2018, 1,
							2440

^aRepresents 0.1M KOH solution.

^bRepresents 0.5 M H₂SO₄ solution.

^cRepresents 1M KOH solution.