Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Compensation effect of electron traps for enhanced fluorescence intensity ratio thermometry performance

Zhi-Han Zuo, ^a Song-Lin Jiang, ^a Zhi-Hao Zhang, ^a Jinhui Liang, ^a Junhao Li, ^{b*} Zhao-Qing Liu,

^a Yibo Chen ^a*

^a School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy

and Materials, Guangzhou University, Guangzhou 510006, China

^b Guangdong Province Key Laboratory of Rare Earth Development and Application, Institute of

Rare Metals, Guangdong Academy of Sciences, Guangzhou 510651, China

*Corresponding Authors

E-mail: lijunhao@irmgdas.gd.cn, chenyibo@gzhu.edu.cn

1. Supplementary Figures

Fig. S1 Rietveld refinement XRD patterns of (a) ZGO:0.001Mn and (b) ZGO:0.003Mn.

Fig. S2 Bandgap value of ZGO derived by Tauc's plot.

Fig. S3 XPS spectra of Zn 2p, Ga 2p, and O 1s in ZGO:xMn (x = 0.001, 0.003).

Fig. S4 PL spectra of ZGO:*x*Mn ($x = 0.001, 0.003; \lambda_{ex} = 290 \text{ nm}$).

Fig. S5 Optimized crystal structures of ZnGa₂O₄ without an Zn-Ga antisite cluster at different Mn concentrations: (a) no Mn atoms, (b) 2 Mn atoms, and (c) 4 Mn atoms in a super cell. Green: Ga; grey: Zn; purple: Mn; red: O.

2. Supplementary Tables

x	Space-group	α (Å)	V (Å ³)
0.001	Ed 2m(227) system	8.3154(0)	574.97(1)
0.003	rd-311(227)-cubic	8.3142(0)	574.72(0)

Table S1 Lattice parameters of typical ZGO: xMn^{2+} samples.

 Table S2 Calculated formation energy of Zn-Ga antisite traps at different Mn concentrations.

Structure	<i>E</i> (antisite) (eV)	E(perfect) (eV)	$\Delta E_{\rm f}({\rm eV})$
Mn ₀	-631.658	-632.301	0.643
Mn ₂	-642.173	-643.062	0.889
Mn ₄	-650.167	-651.108	0.941