Supplementary Information

Low temperature water-assisted crystallization

approach to MOF@TiO₂ core-shell nanostructures for

efficient dye removal

Shouxin Bao, ^{a,b,‡} Mingyang Lv, ^{a,‡} Chen Zhao, ^c Ping She, ^c Zhenyu Lei, ^c Xiaowei Song ^{a,*} and Mingjun Jia ^{c,*}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

^b State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China.

^c Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Corresponding authors: xiaoweisong@jlu.edu.cn (X. Song), jiamj@jlu.edu.cn (M. Jia).

‡ These authors contributed equally to this work.

Fig. S1 HRTEM image of the interface of the MOF core and TiO₂ shell in MOF@TiO₂-A.

Fig. S2 SEM image (a) and PXRD pattern (b) of the as prepared TiO₂-A.

Fig. S3 XPS survey spectra (a) and O 1s XPS spectra of MOF, TiO_2 -A, MOF@TiO_2-P and MOF@TiO_2-A (b).

Fig. S4 TG curves of MOF, TiO₂-A and MOF@TiO₂-A.

The mass percentages of MOF and TiO_2 components in MOF@TiO₂-A are assumed to be x and 1-x. Equation below is obtained according to the remained weights of MOF, TiO_2 -A and MOF@TiO₂-A.

21.6% x + 93.5% (1-x) = 77.0%

x is equal to 23% by solving this equation. That is, the mass percentages of MOF and TiO_2 components in MOF@TiO₂-A are 23 wt% and 77 wt%, respectively. This result is in consistent with that determined by ICP result (26% and 74%), which can be calculated according to the Cr:Ti molar ratio (1:11.5) and the molecular weight of MIL-101 (Cr₃OH(H₂O)₂O[(C₆H₄)-(CO₂)₂]₃·15H₂O, 987 g mol⁻¹) and TiO₂.

Fig. S5 Nitrogen adsorption-desorption isotherms (a), and pore size distribution curves (b) of MOF@TiO₂-P.

Fig. S6 UV–vis DRS (a) and PL spectra of MOF, TiO₂-A and MOF@TiO₂-A with 300 nm excitation.

Fig. S7 Zeta potential of MOF, TiO₂-A, and MOF@TiO₂-A.

Fig. S9 Time-dependent adsorption study of MOF@TiO₂-A.

Fig. S10 Photocatalytic degradation of CR (a) and kinetic study of the degradation process (b).

Fig. S11 PXRD patterns of fresh and used MOF@TiO₂-A (a) and MOF (b).

Fig. S12 Nitrogen adsorption-desorption isotherms of fresh and used MOF@TiO₂-A (a) and MOF (b).

		1			0	2
Sample	$S_{\rm BET}~({ m m}^2/{ m g})$			$V_{\rm total}~({\rm cm^{3/g}})$		
	before	after	decreased	before	after	decreased
MOF@-TiO ₂ -A	1116	1110	0.5%	0.95	0.87	8.4%
MOF	2823	1682	40.4%	1.69	1.02	39.6%

Table S1 BET surface and pore volume of fresh and used MOF@TiO₂-A.