Electronic Supplementary Information

Molybdenum Blue Preassembly Strategy to Design Bimetallic

Fe_{0.54}Mo_{0.73}/Mo₂C@C for Tunable Low-Frequency Electromagnetic

Wave Absorption

Peng He,^{ade} Runze Ma,^{ac} Chen Li,^b Ling Ran,^{ad} Wentao Yuan,^a Yuyang Han,^{de} Lianwen Deng,^b and Jun Yan^{*acde}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China

^b Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China

^c Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, 410083, P. R. China

^d Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, P. R. China

^e Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, P. R. China

Email: yanjun@csu.edu.cn

Table of Contents

Figure	S1. FT	IR spectra	of Mo ₆ ⊂M	o ₇₂ Fe ₃₀			S3
Figure	S2. X	RD pattern	s of FMC an	d MC			S3
Figure	е	S3.	The	EDX	element	al spectr	a of
	FN	/IC			S4		
Figure	e S4.	The EDX e	lemental m	aps of FM	C (a) Corresp	onding samples	, (b) Fe, (c)
	M	ο,		(d)		С	and
	(e))				S	4
Figure	e S5. S	SEM image	s of (a) FM	C-1, (b) FM(C-2, (c) FMC-3	3, (d) FMC-4, (e)	FMC-5 and
	(f)						FMC-
	6						S5
Figure	S6. (a	a) The full 2	XPS spectra	of MC. (b-c	l) High-resolu	ition XPS spectra	a of MC: (b)
	C, (c)	N and (d)	Мо				S5
Figure	S7. R	aman spec	tra of FMC				S6
Figure	S8.	Contour n	naps depen	ded on th	e frequency	and the thickr	ness of the
	absoi	rbers for (a) FMC-1, (b) FMC-2, (c) FMC-3, (d) FMC-4, (e) FM	IC-5 and (f)
	FMC-	6					S7
Figure	S9. E	lectromag	netic paran	neters of N	1C (the real a	ε' (a) and imagi	nary ε" (b)
	parts	of the cor	mplex perm	ittivity; the	real µ' (c) an	d imaginary μ "	(d) parts of
	the c	omplex pe	rmeability).				S8
Figure	S10.	Electroma	gnetic parar	neters of M	C (dielectric l	oss tan δ_{ϵ} (a), ar	id magnetic
	loss t	anδ _μ					S8
Figure	S11.	Electroma	gnetic parar	neters of F	MC composit	es (dielectric los	ss tan δ_{ε} (a),
	and r	nagnetic lo	$ss tan \delta_{\mu}(b)$)			
Figure	S12. (Cole-Cole p	olots of MC	and FMCs.)		-	S10
Figure	S13. (C ₀ values o	f MC and FI	VICs in the f	requency ran	ge of 2-18 GHz	
Figure	S14.	Attenuatio	on constant	α of MC ar	nd FMCs in th	ne frequency ra	nge of 2-18
	GHz			–			S11
Figure	\$15.	The imped	ance match	ing value Z	of MC and Fi	MCs in the frequ	iency range
	of 2-2	18 GHz					
l able :	S1. ICI	P-OES resu	ilts of FMCs				
iable	52.	Electroma	gnetic wav	e absorpti	on of typica	ai carbon-based	a materials
Defe	repor	tea in rece	ent literatur	es			
Refere	ences.						

Figure S1. FTIR spectra of $Mo_6 \subset Mo_{72}Fe_{30}$.

Figure S2. XRD patterns of FMC and MC.

Figure S3. The EDX elemental spectra of FMC.

Figure S4. The EDX elemental maps of FMC (a) Corresponding samples, (b) Fe, (c) Mo, (d) C and (e) N.

Figure S5. SEM images of (a) FMC-1, (b) FMC-2, (c) FMC-3, (d) FMC-4, (e) FMC-5 and (f) FMC-6.

Figure S6. (a) The full XPS spectra of MC. (b-d) High-resolution XPS spectra of MC: (b) C, (c) N and (d) Mo.

Figure S7. Raman spectra of FMC.

Figure S8. Contour maps depended on the frequency and the thickness of the absorbers for (a) FMC-1, (b) FMC-2, (c) FMC-3, (d) FMC-4, (e) FMC-5 and (f) FMC-6.

Figure S9. Electromagnetic parameters of MC (the real ε' (a) and imaginary ε'' (b) parts of the complex permittivity; the real μ' (c) and imaginary μ'' (d) parts of the complex permeability).

Figure S10. Electromagnetic parameters of MC (dielectric loss tan δ_{ϵ} (a), and magnetic loss tan δ_{μ} (b)).

Figure S11. Electromagnetic parameters of FMC composites (dielectric loss tan δ_{ϵ} (a), and magnetic loss tan δ_{μ} (b)).

Figure S12. Cole-Cole plots of MC and FMCs.

Figure S13. C_0 values of MC and FMCs in the frequency range of 2-18 GHz

Figure S14. Attenuation constant α of MC and FMCs in the frequency range of 2-18 GHz

Figure S15. The impedance matching value Z of MC and FMCs in the frequency range of 2-18 GHz

Sample	Fe(mg/L)	Mo(mg/L)	Molar ratio (Fe _{0.54} Mo _{0.73} /Mo ₂ C)
FMC-1	1.935	9.285	2.56
FMC-2	2.144	9.941	2.74
FMC-3	2.413	11.141	2.85
FMC-4	2.670	12.159	2.99
FMC-5	1.893	8.092	3.25
FMC-6	2.389	9.741	3.61

TableS1. ICP–OES results of FMCs

 TableS2. Electromagnetic wave absorption of typical carbon-based materials reported in recent

 literatures.

		incruciules.			
Band	Materials	Minimum RL	Frequenc	Bandwidth	Ref.
		(dB)	У	range	
			(GHz)	(GHz)	
Ku band	NiAl-LDH/Graphite	-41.50	17.80	4.40	[1]
	Fe₃N@C	-42.35	17.40	6.00	[2]
	P-doped carbonized bacterial	-66.84	16.96	10.00	[5]
	cellulose/MoSe ₂				
	Ni/C	-57.25	16.10	5.10	[3]
	C@MoO2/Graphite	-35.40	16.00	4.50	[4]
	FMC-1	-39.00	14.64	5.04	This work
X band	Carbonized bacterial	-53.33	10.64	4.04	[5]
	cellulose/MoSe2				
	CoNSs@RGO	-45.15	10.52	7.14	[6]
	Graphene/ Si ₃ N ₄	-23.50	9.27	4.20	[7]
	Mo ₂ C/C	-49.19	9.04	4.56	[8]
	Mo _{4.8} Si ₃ C _{0.6} /SiC/C _{free}	-59.00	8.00	12.55	[9]
	FMC-2	-45.92	11.68	3.28	This work
C band	Co ₉ S ₈ /C/Ti ₃ C ₂ T _x	-50.07	7.60	4.24	[10]
	C@MoO2/Graphite	-33.50	6.90	4.88	[4]
	Mo ₂ C/Co/C	-48.00	6.60	15.00	[11]
	CoNC/CNTs	-44.60	5.20	4.50	[12]
	FMC-5	-48.91	4.08	1.04	This work
S band	Ni/MWCNT	-24.90	2.80		[13]
	FMC-6	-37.15	3.52	0.8	This work

References

- X. F, Xu, S. H. Shi, Y. L. Tang, G. Z. Wang, M. F. Zhou, G. Q. Zhao, X. C. Zhou, S. W. Lin, F. B. Meng, Growth of NiAl-Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application. *Adv. Sci.*, 2021, **8**, 2002658.
- 2 X. Q. Cui, X, H. Liang, W. Liu, W. H. Gu. G. B. Ji and Y. W. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe₃N@C. *Chem. Eng. J.*, 2020, **381**, 122589.
- 3 Y. Qiu, Y. Lin, H. B. Yang, L. Wang, M. Q. Wang and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. *Chem. Eng. J.*, 2020, **383**, 123207.
- C. Wu, Z. F Chen, M. L. Wang, X. Cao, Y. Zhang, P. Song, T. Y. Zhang, X. L. Ye, Y. Yang, W. H. Gu,
 J. D. Zhou, Y. Z. Huang, Confining Tiny MoO₂ Clusters into Reduced Graphene Oxide for
 Highly Efficient Low Frequency Microwave Absorption. *Small*, 2020, 16, 2001686.
- Z. J. Xu, M. He, Y. M. Zhou, S. X. Nie, Y. J. Wang, Y. Huo, Y. F. Kang, R. L. Wang, R. Xu, H. Peng,
 X. Chen, Spider web-like carbonized bacterial cellulose/MoSe₂ nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. *Nano Res.*, 2021, 14, 738-746.
- 6 Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co₃O₄-nanosheets/reduced-graphene-oxide composite. *Nano Res.*, 2017, **10**, 980-990.
- F. Ye, Q. Song, Z. C. Zhang, W. Li, S. Y. Zhang, X. W. Yin, Y. Z. Zhou, H. W. Tao, Y. S. Liu, L. F. Cheng, L. T. Zhang, H. J. Li, Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si₃N₄ Ceramic for Broadband High-Performance Microwave Absorption. *Adv. Funct. Mater.*, 2018, **28**, 1707205.
- 8 S. S. Dai, Y. Cheng, B. Quan, X. H. Liang, W. Liu, Z. H. Yang, G. B. Ji and Y. W. Du, Porouscarbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. *Nanoscale*, 2018, **10**, 6945-6953.
- Y. Feng, Y. j. Yang, Q. B. Wen, R. Riedel, Z. J. Yu, Dielectric Properties and Electromagnetic Wave Absorbing Performance of Single-Source-Precursor Synthesized Mo_{4.8}Si₃C_{0.6}/SiC/C_{free} Nanocomposites with an In Situ Formed Nowotny Phase. *ACS Appl. Mater. Interfaces*, 2020, 12, 16912-16921.
- 10 T. Q. Hou, Z. R. Jia, B. B. Wang, H. B. Li, X. H. Liu, L. Bi, G. L. Wu, MXene-based accordion 2D hybrid structure with Co₉S₈/C/Ti₃C₂T_x as efficient electromagnetic wave absorber. *Chem. Eng. J.*, 2021, **414**, 128875.
- 11 Y. H. Wang, X. D. Li, X. J. Han, P. Xu, L. R. Cui, H. H Zhao, D. W. Liu, F. Y. Wang and Y. C. Du, Ternary Mo₂C/Co/C composites with enhanced electromagnetic waves absorption. *Chem. Eng. J.*, **2020**, *387*, 124159.
- 12 X. Q. Xu, F. T. Ran, Z. M. Fan, H. Lai, Z. J. Cheng, T. Lv, L. Shao, Y. Y. Liu, Cactus-Inspired Bimetallic Metal–Organic Framework-Derived 1D–2D Hierarchical Co/N-Decorated Carbon Architecture toward Enhanced Electromagnetic Wave Absorbing Performance. ACS Appl. Mater. Interfaces, 2019, **11**, 13564-13573.

13 G. Tong, F. Liu, W. Wu, F. Du and J. G. Guan, Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. *J. Mater. Chem. A*, 2014, **2**, 7373-7382.