Supporting Information

Strategy for Synthesis of Zeolite Y by Artificial Fish Reef Breeding

Negative Crystals

Peng Liu^{ab}, Tian Xia^a, Suofu Nie^a, Qiaoxia Guo^c, Chunming Xu^a, Baojian Shen^{*a}

^a State Key Laboratory of Heavy Oil Processing; The Key Laboratory of Catalysis of CNPC; College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China

 ^b School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 453007 Xinxiang, Henan, China
 ^c College of Science, China University of Petroleum, Beijing 102249, China

* Corresponding author email: baojian@cup.edu.cn

Figure S1 XRD patterns of samples taken from gel at different crystallization time in the synthesis of NaY-CPAM (a) and NaY-contrast (b), respectively.

Table S1 Crystallinity of aliquots taken from gel at different crystallization time in the preparationof NaY-CPAM and NaY-Contrast zeolites.

Samples	Crastallization	C/C ₀	Samples	Crastallization	C/C ₀
(With CPAM)	time (h)	(%)	(Without CPAM)	time (h)	(%)
L-1	2	0	L-1	2	0
L-2	4	0	L-2	4	0
L-3	6	0	L-3	6	0
L-4	8	0	L-4	11	0
L-5	9	16	L-5	12	13
L-6	10	34	L-6	13	20
L-7	11	44	L-7	14	35
L-8	12	49	L-8	15	40
L-9	13	64	L-9	16	57
L-10	14	85	L-10	17	63
L-11	15	95	L-11	20	90
	—		L-12	24	94

Table S2 Relative crystallinity, SiO_2/Al_2O_3 mole ratio and unit cell of NaY-Reference, NaY-Contrast, and NaY-CPAM

Smaple	C/C ₀ , %	SiO ₂ /Al ₂ O ₃ mole ratio	Unit cell (a ₀), Å
NaY-Reference	93	5.0	24.67
NaY-Contrast	94	5.0	24.67
NaY-CPAM	95	5.2	24.66

Sample	S_{BET}^{a} ,	S_{Micro}^{b} ,	$S_{External}^{c}$,	V_{total}^{d} ,	V _{micro} e,	V_{meso}^{f} ,
	m ² g ⁻¹	m ² g ⁻¹	m ² g ⁻¹	cm ³ g ⁻¹	cm ³ g ⁻¹	cm ³ g ⁻¹
NaY-Contrast	746	713	33	0.381	0.349	0.032
NaY-CPAM	736	686	50	0.447	0.335	0.112

^a BET method; ^{b, e} t-plot method; ^c $S_{External} = S_{BET}$ - S_{Micro} ; ^d Volume absorbed at $p/p_0 = 0.9944$; ^f $V_{meso} = V_{pore}$ - V_{micro}

Figure S2 TG (a) and DTG (b) curves of samples from different crystallization time in the synthesis of NaY-CPAM zeolite

Figure S3 XRD patterns of NaY-CPAM (a) and NaY-Contrast (b) after calcinating at different temperature for 2 h.

Table S4 Relative crystallinity for NaY-CPAM and NaY-Contrast zeolites after calcinating at different temperature for 2 h.

1						
Samples	Relative	crystallinity	corresponding	to	different	calcination
	temperature	e, C/C ₀ / %				
	Without	600 °C	700 °C	80) °C	900 °C
	calcination					
NaY-Contrast	96	92	93	39		0
NaY-CPAM	97	95	91	90		7

Table S5 SiO₂/Al₂O₃ mole ratio and Na content of NaY-Contrast and NaY-CPAM determined by XRF and XPS.

Samples	XRF ^a		XPS ^b	
	Na ₂ O wt% ^a	SiO ₂ /Al ₂ O ₃ ^a	Na % ^b	$SiO_2/Al_2O_3^b$
NaY-Contrast	14.97	5.2	15.00	3.0
NaY-CPAM	14.07	5.2	14.02	4.8

^a Bulk Na₂O wt% and SiO₂/Al₂O₃ mole ratio determined by XRF. ^b Na content and SiO₂/Al₂O₃ mole ratio on the external determined by XPS.

Figure S4 XRD patterns of USY-Contrast and USY-CPAM zeolites.

Table S6 Crystallinity, unit cell constant, framework SiO₂/Al₂O₃ mole ratio (obtained by XRD) and content of Na₂O, bulk SiO₂/Al₂O₃ mole ratio (obtained by XRF) on USY-Contrast and USY-CPAM zeolites

Sample	C/C ₀ /%	$a_0(Å)$	SiO ₂ /Al ₂ O ₃		Na ₂ O wt%
-			XRD	XRF	
USY-Contrast	73	24.40	13.8	6.6	0.61
USY-CPAM	76	24.37	16.4	7.0	0.54

Figure S5 Isotherms curves (a) and pore distribution curves (adsorption branch) (b) on USY-Contrast and USY-CPAM zeolites.

Table S7 Texture prope	rties of USY-Contrast	and USY-CPAM zeolites.
------------------------	-----------------------	------------------------

Samples	${{{ m S}_{{ m BET}}}^a} \atop {m^2 \cdot g^{-1}}$	${{S_{Micro}}^b} \ m^2 \cdot g^{-1}$	$\frac{S_{External}^{c}}{m^{2} \cdot g^{-1}}$	V_{total}^{d} cm ³ ·g ⁻¹	V _{micro} ^e cm ³ ·g ⁻¹	$V_{meso}{}^{f}$ cm ³ ·g ⁻¹
USY-Contrast	649	578	71	0.415	0.282	0.133
USY-CPAM	628	527	101	0.400	0.257	0.143

^a BET method; ^{b, e} t-plot method; ^c $S_{External} = S_{BET} - S_{Micro}$; ^d Volume absorbed at $p/p_0 = 0.9944$; ^f $V_{meso} = V_{pore} - V_{micro}$

Figure S6 XRD patterns of USY-Contrast and USY-CPAM zeolites after calcinating at 800 °C for 4h and 6h (a) and steaming treatment at 800 °C for 17h (b).

Table S8 Crystallinity of USY-Contrast and USY-CPAM zeolites after calcinating at 800 °C for 4h and 6h and steaming treatment at 800 °C for 17h

Samples	Crystallinity / %
USY-Contrast-800-4h	81
USY-Contrast-800-6h	70
USY-Contrast-800-17h	60
USY-CPAM-800-4h	86
USY-CPAM-800-6h	83
USY-CPAM-800-17h	61

Table S9 Concentrations of Brønsted acid (B) and Lewis acid sites (L) for USY-Contrast and USY-CPAM zeolites.

Samplas	Total acid sites (200 °C),					Strong acid sites (350 °C),			
Samples _	L	B	L+B	B/L		L	B	L+B	B/L
USY-Contrast	107	217	326	2.0		70	74	144	1.1
USY-CPAM	182	164	346	0.9		129	78	207	0.6

Figure S7 Selectivity on USY-Contrast and USY-CPAM catalysts during the TIPB conversion for DIPB, Cumene, and Benzene under identical conditions (T = 200 °C, FTIPB = 10 μ L/min, TOS = 15 min).