Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting information:

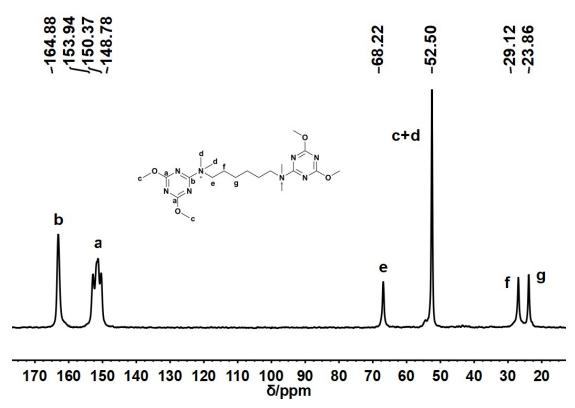
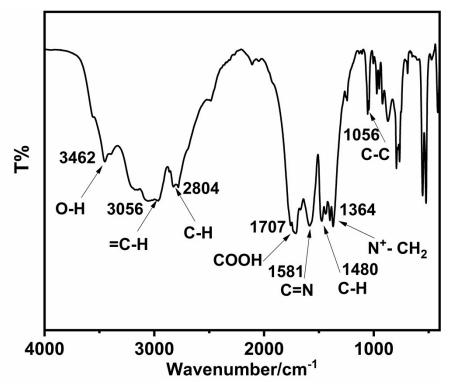



Fig. S1. The solid-state ¹³C CP/MAS NMR spectrum of the TBQA-1.

Fig. S2. The FT-IR spectrum of the TBQA-1. The absorption peak of –COOH in FT-IR spectrum was probably attributed to the hydrolysis of residual acetonitrile, which was serving as a solvent.

Fig. S3. Selective oxidation of cyclohexane. Similar reaction was performed with Pd loaded NSH-ZSM-48-300, SBA-15 and conventional Silicalite-1.

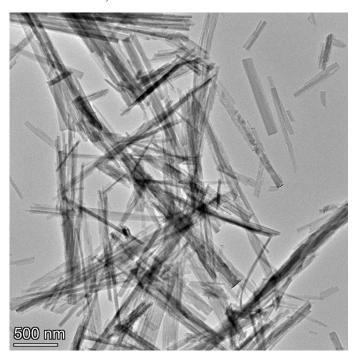


Fig. S4. The Low-magnification TEM images of NSH-ZSM-48-300.

				$V_{total}^{d}/$ cm^3/g		
Conventional SBA-15	858	117	714	1.292	0.065	1.227
Conventional Silicalite-1	275	220	57	0.185	0.116	0.069

Table S1. Porosity of the calcined samples.

 $[^]a$ calculated by applying the BET equation using the linear part (0.05 \leq P/P $_0 \leq$ 0.30) of the adsorption isotherm. b calculated by t-plot method. c calculated by BJH adsorption model. d V_{total} $_=$ V_{micro} $_+$ $V_{meso.}$