Supporting Information

Centrosymmetric $Rb[Te_2O_4(OH)_5]$ and noncentrosymmetric $K_2[Te_3O_8(OH)_4]$: metal tellurates with corner and edge-sharing $(Te_4O_{18})^{12-}$ anion group

Dandan Wang,^a Pifu Gong,^b Xinyuan Zhang,^{*a} Zheshuai Lin,^b Zhanggui Hu ^{*a} and Yicheng Wu^a

- ^a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China.
- ^b Key Laboratory of Functional Crystals and Laser Technology, Beijing Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Contents.

Table S1. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) of Rb[Te₂O₄(OH)₅] (**RTOH**).

Table S2. Anisotropic displacement parameters (Å²×10³) for RTOH.

Table S3. Selected bond lengths (Å) of RTOH.

Table S4. Selected bond angles (°) of RTOH.

Table S5. The measured SHG responses of tellurates (VI) containing alkali/alkaline earth metal or hydroxy.

Figure S1. Crystal imagines and X-ray powder diffraction pattern of **RTOH** (a, c) and **KTOH** (b, d).

Figure S2. The EDS spectra of RTOH (a) and KTOH (b).

Figure S3. The dihedral angle of two $(Te_4O_{18})^{12}$ cluster group in **RTOH** (a) and $_{\infty}(Te_3O_{12})^{6}$ anionic group in **KTOH** (b).

Figure S4. The $(Te_4O_{18}H_{10})^{2-}$ anion group of **RTOH** (a) and $_{\infty}(Te_3O_{12}H_4)^{2-}$ anionic group of **KTOH** (b).

Figure S5. The coordination environment of Rb atom in **RTOH** (a) and K atom in **KTOH** (b).

Figure S6. The bond lengths of $\operatorname{TeO}_{6}^{6-}$ polyhedra for **RTOH** (a, b) and **KTOH** (c, d).

Figure S7. The IR spectra of RTOH.

Figure S8. The Raman spectra of RTOH (a) and KTOH (b).

Figure S9. Birefringence measurement of RTOH.

Figure S10. Birefringence measurement of KTOH.

Supplementary Tables.

Atom	Х	у	Z	$U_{(eq)}{}^a$
Te1	4694.2(12)	1865.2(7)	6107.1(4)	9.63(19)
Te2	3669.0(12)	4130.2(7)	4263.0(4)	8.26(18)
Rb1	-111(2)	3997.2(11)	7844.6(6)	19.1(3)
01	1814(13)	2456(7)	6512(4)	14.9(16)
O2	6172(14)	1204(8)	7165(4)	14.3(17)
03	3251(12)	2370(7)	5000(4)	9.6(15)
O4	3280(13)	-215(7)	5858(4)	13.2(17)
05	7640(14)	1199(8)	5760(4)	13.6(17)
O6	5989(12)	3966(7)	6390(4)	12.0(16)
07	369(13)	4040(8)	3823(4)	13.5(16)
08	4501(12)	2795(7)	3483(4)	11.3(16)
09	3028(13)	5543(7)	5166(4)	9.7(15)

Table S1. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacementparameters (Å²×10³) of Rb[Te₂O₄(OH)₅] (**RTOH**).

 $^{a}U_{(eq)}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Te1	10.7(4)	9.4(3)	8.9(3)	0.6(3)	1.7(3)	-0.3(3)
Te2	9.7(4)	8.4(3)	6.4(3)	-0.3(3)	0.5(3)	-0.2(3)
Rb1	20.7(7)	18.2(6)	18.0(5)	-1.5(4)	1.3(5)	1.4(5)
01	14(2)	17(2)	14(2)	-0.7(17)	4.8(18)	0.7(17)
02	15(2)	15(2)	12(2)	2.4(18)	2.2(18)	2.5(18)
03	11(2)	11(2)	7(2)	2.8(17)	2.0(17)	-1.9(17)
04	20(5)	3(3)	17(4)	2(3)	4(3)	0(3)
05	12(2)	15(2)	13(2)	-0.7(17)	-0.1(18)	3.4(17)
06	16(4)	7(3)	12(3)	3(3)	-1(3)	-1(3)
O7	4(4)	22(4)	14(4)	-4(3)	-2(3)	0(3)
08	13(4)	11(3)	11(3)	-3(3)	3(3)	-1(3)
09	9(2)	11(2)	10(2)	-1.4(17)	3.5(17)	0.4(17)

Table S2. Anisotropic displacement parameters ($Å^{2} \times 10^{3}$) for **RTOH**.

Bond	Length/Å
Te1-O1	1.917(7)
Te1-O2	1.895(7)
Te1-O3	1.924(6)
Te1-O4	1.933(6)
Te1-O5	1.926(8)
Te1-O6	1.934(6)
Te2-O3	1.943(6)
Te2-O6 ⁴	1.945(6)
Te2-O7	1.903(7)
Te2-O8	1.814(6)
Te2-O9	1.971(6)
Te2-O9 ⁴	1.984(7)
Rb1-O1	2.890(7)
Rb1-O1 ⁹	3.274(6)
Rb1-O2 ⁸	3.230(7)
Rb1-O2 ¹⁰	2.899(8)
Rb1-O4 ⁹	3.057(7)
Rb1-O5 ¹⁰	3.105(7)
Rb1- O6 ⁸	3.001(7)
Rb1-O7 ⁶	3.176(7)
Rb1-O7 ⁷	2.996(6)
Rb1-O8 ⁷	3.059(7)

 Table S3. Selected bond lengths (Å) of RTOH.

¹1-X,-1/2+Y,3/2-Z; ²1+X,+Y,+Z; ³-X,-1/2+Y,3/2-Z; ⁴1-X,1-Y,1-Z; ⁵+X,1/2-Y,-1/2+Z; ⁶-X,1-Y,1-Z; ⁷+X,1/2-Y,1/2+Z; ⁸-1+X,+Y,+Z; ⁹-X,1/2+Y,3/2-Z; ¹⁰1-X,1/2+Y,3/2-Z

Angle	(°)	Angle	(°)
O1-Te1-O3	90.4(3)	O3-Te2-O9 ⁴	90.2(3)
O1-Te1-O6	89.7(3)	O3-Te2-O9	86.1(3)
O1-Te1-O4	87.6(3)	O3-Te2-O6 ⁴	174.3(3)
O1-Te1-O5	176.6(3)	O6 ⁴ -Te2-O9	88.2(3)
O2-Te1-O3	175.4(3)	O6 ⁴ -Te2-O9 ⁴	89.0(3)
O2-Te1-O6	86.8(3)	O7-Te2-O9 ⁴	171.7(3)
O2-Te1-O4	92.5(3)	O7-Te2-O9	91.6(3)
O2-Te1-O1	92.3(3)	O7-Te2-O6 ⁴	89.8(3)
O2-Te1-O5	84.4(3)	O7-Te2-O3	90.1(3)
O3-Te1-O6	96.9(3)	O8-Te2-O9 ⁴	95.3(3)
O3-Te1-O4	83.9(3)	O8-Te2-O9	175.2(3)
O3-Te1-O5	92.8(3)	O8-Te2-O3	92.4(3)
O4-Te1-O6	177.2(3)	O8-Te2-O6 ⁴	93.2(3)
O5-Te1-O6	91.1(3)	O8-Te2-O7	93.0(3)
O5-Te1-O4	91.6(3)	O9-Te2-O9 ⁴	80.2(3)

 Table S4. Selected bond angles (°) of RTOH.

¹1-X, -1/2+Y, 3/2-Z; ²1+X, +Y, +Z; ³-X, -1/2+Y, 3/2-Z; ⁴1-X, 1-Y, 1-Z; ⁵+X, 1/2-Y, -1/2+Z; ⁶-X, 1-Y, 1-Z; ⁷+X, 1/2-Y, 1/2+Z; ⁸-1+X, +Y, +Z; ⁹-X, 1/2+Y, 3/2-Z; ¹⁰1-X, 1/2+Y, 3/2-Z

Compounds	Space group	SHG effect	Band gap	PM/NPM ^a	Ref
Li ₂ ZrTeO ₆	R3	$2.5 \times \text{KDP}$	4.08 eV	РМ	1
Li ₂ HfTeO ₆	R3	$2.2 \times \text{KDP}$	3.98 eV	PM	2
Li ₂ TiTeO ₆	Pnn2	$26 \times \text{KDP}$	3.67 eV	PM	3
Li ₂ SnTeO ₆	Pnn2	$2.5 \times \text{KDP}$	4.0 eV	PM	3
$Sr_3Zn_3TeP_2O_{14}$	P321	$2.8 \times \text{KDP}$	5.58 eV	PM	4
$Ba_3Zn_3TeP_2O_{14}\\$	P321	$3 \times \text{KDP}$	5.69 eV	РМ	4
$Pb_{3}Mg_{3}TeP_{2}O_{14}$	P321	$13.5 \times \text{KDP}$	4.96 eV	PM	5
Bi ₃ TeO ₆ OH(NO ₃) ₂	<i>P</i> 2 ₁	$3 \times \text{KDP}$	3.59 eV	РМ	6
Pb ₉ Te ₂ O ₁₃ (OH)(NO ₃) ₃	P4 ₃ 2 ₁ 2	$1.2 \times \text{KDP}$	3.62 eV	NPM	7
КТОН	Fdd2	$0.6 \times \text{KDP}$	4.05 eV	PM	This work

Table S5. The measured SHG responses of tellurates (VI) containing alkali/alkaline

 earth metal or hydroxy.

a: PM: Phase-Matching, NPM: No Phase-Matching.

Supplementary Figures.

Figure S1. Crystal imagines and X-ray powder diffraction pattern of **RTOH** (a, c) and **KTOH** (b, d).

Figure S2. The EDS spectra of RTOH (a) and KTOH (b).

Figure S3. The dihedral angle of two $(Te_4O_{18})^{12}$ - cluster group in RTOH (a) and $_{\infty}(Te_3O_{12})^{6}$ - anionic group in KTOH (b).

Figure S4. The $(Te_4O_{18}H_{10})^{2-}$ anionic group of **RTOH** (a) and $_{\infty}(Te_3O_{12}H_4)^{2-}$ anion group of **KTOH** (b).

Figure S5. The coordination environment of Rb atom in **RTOH** (a) and K atom in **KTOH** (b).

Figure S6. The bond lengths of ${^{\text{TeO}}}_{6}^{6-}$ polyhedra for **RTOH** (a, b) and **KTOH** (c, d).

Figure S7. The IR spectra of RTOH (a) and KTOH (b).

Figure S8. The Raman spectra of RTOH (a) and KTOH (b).

Figure S9. Birefringence measurement of **RTOH**; (a) the original crystal; (b) the crystal in the extinction state; (c) the crystal interference color observed under the microscope and (d) the photographs of crystal thickness.

Figure S10. Birefringence measurement of KTOH; (a) the original crystal; (b) the crystal in the extinction state; (c) the crystal interference color observed under the microscope and (d) the photographs of crystal thickness.

References

- W. Q. Lu, Z. L. Gao, X. T. Liu, X. X. Tian, Q. Wu, C. G. Li, Y. X. Sun, Y. Liu and X. T. Tao, Rational Design of a LiNbO₃-like Nonlinear Optical Crystal, Li₂ZrTeO₆, with High Laser-Damage Threshold and Wide Mid-IR Transparency Window, J. Am. Chem. Soc., 2018, 140, 13089-13096.
- D. Wang, Y. X. Zhang, Q. Shi, Q. Liu, D. Q. Yang, B. B. Zhang and Y. Wang, Tellurate polymorphs with high-performance nonlinear optical switch property and wide mid-IR transparency, *Inorg. Chem. Front.*, 2022, DOI: 10.1039/d2qi00200k.
- 3. X. L. Du, X. J. Guo, Z. L. Gao, F. A. Liu, F. F. Guo, S. Y. Wang, H. Y. Wang, Y. X. Sun and X. T. Tao, Li₂MTeO₆ (M=Ti, Sn): Mid-Infrared Nonlinear Optical Crystal with Strong Second Harmonic Generation Response and Wide Transparency Range, *Angew. Chem. Int. Ed.*, 2021, **133**, 23508-23514.
- H. Yu, J. Young, H. Wu, W. Zhang, J. M. Rondinelli and P. S. Halasyamani, Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships in the Dugganite A₃B₃CD₂O₁₄ Family, *J. Am. Chem. Soc.*, 2016, **138**, 4984-4989.
- H. W. Yu, W. G. Zhang, J. Young, J. M. Rondinelli and P. S. Halasyamani, Bidenticity-Enhanced Second Harmonic Generation from Pb Chelation in Pb₃Mg₃TeP₂O₁₄, *J. Am. Chem. Soc.*, 2015, **138**, 88-91.
- 6. S. G. Zhao, Y. Yang, Y. G. Shen, B. Q. Zhao, L. N. Li, C. M. Ji, Z. Y. Wu, D. Q. Yuan, Z. S. Lin, M. C. Hong and J. H. Luo, Cooperation of Three Chromophores Generates the Water-Resistant Nitrate Nonlinear Optical Material Bi₃TeO₆OH(NO₃)₂, *Angew. Chem. Int. Ed.*, 2017, **56**, 540-544.
- Y. G. Chen, N. Yang, X. X. Jiang, Y. Guo and X. M. Zhang, Pb@Pb₈ Basket-like-Cluster-Based Lead Tellurate-Nitrate Kleinman-Forbidden Nonlinear-Optical Crystal: Pb₉Te₂O₁₃(OH)(NO₃)₃, *Inorg Chem*, 2017, 56, 7900-7906.