Electronic Supplementary Information for

A targeted and efficient CDT system with photocatalytic supplement

of H₂O₂ and hydroxyl radical production at a neutral pH

Xuwen Da,^{a,b} Zhanhua Wang, ^{a,b} Yao Jian, ^{a,b} Chao Zhang, ^{a,b} Yuanjun Hou, ^a Yishan Yao, ^{*c} Xuesong Wang, ^{*a,b} Qianxiong Zhou^{*a}

^{a.} Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy

^{b.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^c Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China. Email: spray_yao123456@hotmail.com (Y. S. Yao)

of Sciences, Beijing 100190, P. R. China. E-mail: xswang@mail.ipc.ac.cn (X. S. Wang), zhouqianxiong@mail.ipc.ac.cn (Q. X. Zhou); Fax: +86-10-62564049; Tel: +86-10-82543592

Figure S1. Absorption spectral changes of NADH (200 μ M in water) in the presence of Ru1 (2 μ M) (A) or Ru2 (2 μ M) (B) under light irradiation (470 nm, 22.5 mW cm⁻²). Inset is the result of H₂O₂ paper test after irradiation for 12 min.

Figure S2. (A) Absorbance changes of NADH in water at 340 nm upon irradiation in the presence of Ru1-Ru3. (B) TOF values of Ru1-Ru3 at different times.

Figure S3. ¹H NMR spectra of Ru3, NADH, NAD⁺, and the mixture of Ru3 and NADH in D_2O/CD_3OD (50/50, v/v) in the dark or after light irradiation.

Figure S4. pH changes of the aqueous solution of NADH and Ru3 upon irradiation.

Figure S5. Stern-Volmer luminescence quenching curves of Ru1-Ru3 by NADH under an argon atmosphere. I_0 and I are the emission intensities in the absence and presence of NADH, respectively.

Figure S6. Emission lifetimes of Ru1-Ru3 in the presence of varied concentrations of NADH under an argon atmosphere.

Figure S7. ¹H NMR spectral changes of Ru3 in D_2O/CD_3OD (50/50, v/v) upon addition of different concentrations of NADH.

Figure S8. ¹H NMR spectral changes of **Ru1** in D_2O/CD_3OD (50/50, v/v) upon addition of different concentrations of NADH.

Figure S9. Absorption spectral changes of NADH (200 μ M) in Ar-saturated water in the presence of Ru1(2 μ M) (A), Ru2 (2 μ M) (B) or Ru3 (2 μ M) under light irradiation (470 nm, 22.5 mW cm⁻²).

Figure S10. ${}^{1}O_{2}$ generation of Ru(bpy) ${}_{3}^{2+}$ (A), Ru1 (B), Ru2 (C), and Ru3 (D) in water upon 470 nm light irradiation (22.5 mW/cm²), using 9,10-ABDA (50 μ M) as a chemical trap.

Figure S11. EDS spectrum of BSA@Fe/Ru.

Figure S12. DLS results of BSA@Fe/Ru (A), BSA@Ru (B) and BSA@Fe (C).

Figure S13. (A) Absorption spectra of Ru3 and BSA@Ru NPs. (B) Absorption spectra of $Fe(tpy)Cl_3$ and BSA@Fe.

Figure S14. •OH generation ability of BSA@Fe (10 μ M based on Fe(tpy)Cl₃) at pH 7.4 in the absence or presence of H₂O₂, using DMPO (20 mM) as a spin trapping agent.

Figure S15. Absorption spectral changes of NADH (200 μ M) in water in the presence of BSA@Ru (2 μ M based on Ru3) under light irradiation (470 nm, 22.5 mW cm⁻²). Inset is the result of H₂O₂ paper test after irradiation for 30 min.

Figure S16. Absorption spectral changes of NADH (200 μ M) in water in the presence of BSA@Fe (10 μ M based on Fe(tpy)Cl₃) under light irradiation (470 nm, 22.5 mW cm⁻²). Inset is the result of H₂O₂ paper test after irradiation for 30 min.

Figure S17. •OH generation in different conditions using DMPO (20 mM) as a spin trapping agent. Solution pH 7.4; nanoparticle concentrations, 2 μ M based on Ru3 or 10 μ M based on Fe(tpy)Cl₃; NADH concentration, 200 μ M; light irradiation, 470 nm, 22.5 mW cm⁻².

Figure S18. Absorption spectral changes of methylene blue (MB) under different conditions. Concentration: nanoparticles, 2 μ M based on Ru3 or 10 μ M based on Fe(tpy)Cl₃; MB, 20 μ M; H₂O₂, 10 mM; NADH, 200 μ M. Light irradiation, 470 nm, 22.5 mW cm⁻².

Figure S19. Intracellular ROS levels of A549 cells treated by PBS or different nanoparticles (10 μ g/mL) in the dark.

Figure S20. Cytotoxicity of BSA@Fe/Ru, BSA@Ru and BSA@Fe towards A549 and HeLa cells in the dark or upon 470 nm light irradiation for 30 min (22.5 mW/cm²).

Figure S21. Cell viability of the BSA@Fe/Ru treated L-O2, A549 and HeLa cells in the dark or upon 470 nm light irradiation for 30 min (22.5 mW/cm²).

Figure S22. Images of the A549 cells treated with BSA@Fe/Ru, BSA@Ru and BSA@Fe (30 μ g/mL) with or without irradiation (470 nm, 22.5 mW/cm² for 30 min) by staining with Calcein-AM and PI.

Figure S23. H&E staining images of heart, liver, spleen, lung, and kidney after different treatments for 14 days. (i) PBS + Light, (ii) BSA@Fe, (iii) BSA@Ru, (iv) BSA@Ru + Light, (v) BSA@Fe/Ru, (iv) BSA@Fe/Ru + Light. Scale bars, 200 µm.