Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Compositional Engineering of Doped Zerodimensional Zinc Halide Blue Emitters for Efficient X-ray Scintillation

Yingchun Zhou¹, Quan Zhou¹, Xiaowei Niu¹, Zheng-Guang Yan¹*, Taifeng Lin², Jiawen Xiao¹* and Xiaodong Han¹

1-Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2-Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

E-mail: yanzg@bjut.edu.cn; xiaojw@bjut.edu.cn; xdhan@bjut.edu.cn

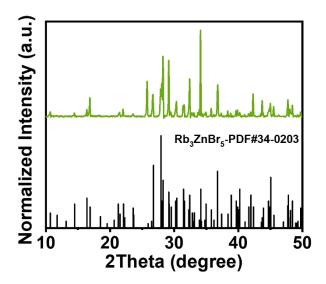
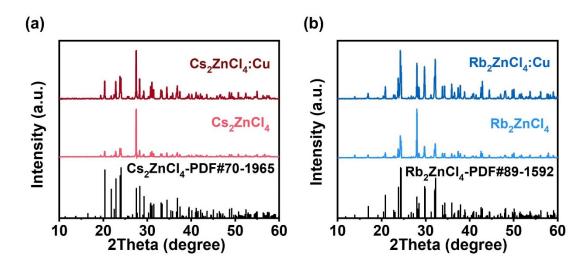
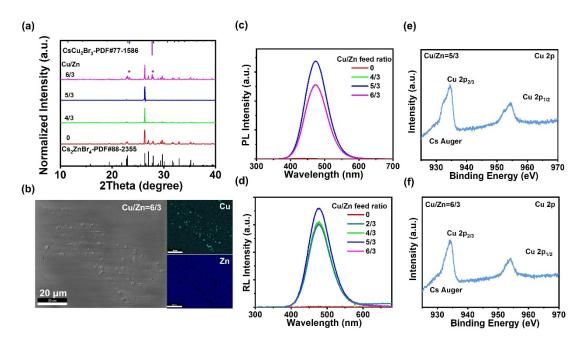
Table S1. Composition of Cu-doped samples measured by ICP-AES.

samples	Cu/Zn precursors ratio	Cu content (at%, ICP)
Cu-doped Cs ₂ ZnBr ₄	2/3	0.67
	3/3	36
	4/3	65
	5/3	103
	6/3	140
Cu-doped Cs ₂ ZnCl ₄	2/3	0.30
Cu-doped Rb ₂ ZnCl ₄	2/3	0.59

 $\label{eq:cu/Zn} \text{Cu/Zn precursors ratio} = \frac{\textit{molar feed ratio of CuBr}}{\textit{molar feed ratio of ZnBr}_2}$

The content of Cu was expressed relative to that Zn, which was assumed to be 1.

$$\frac{\textit{Cu concentration measured by ICP}}{\textit{Cu content} = \frac{\textit{Zn concentration measured by ICP}}{\textit{Zn concentration measured by ICP}} \times 100\%$$

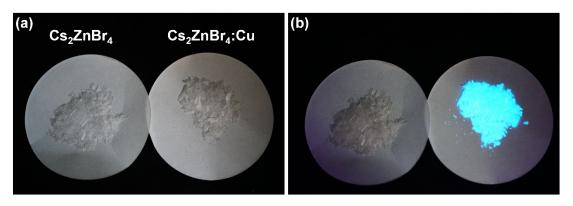
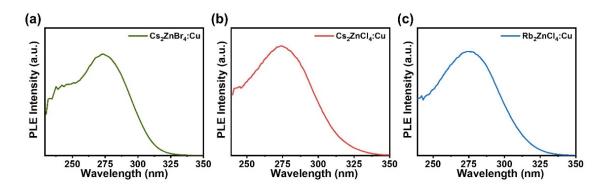
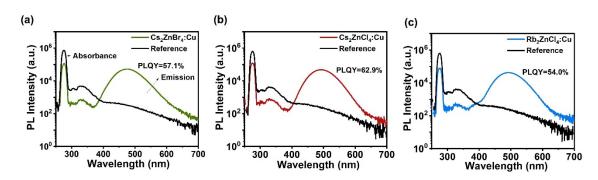
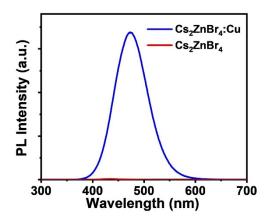

Figure S1. XRD pattern of Rb₃ZnBr₅.

Figure S2. (a) XRD patterns of pristine Cs_2ZnCl_4 and Cs_2ZnCl_4 :Cu. (b) XRD patterns of pristine Rb_2ZnCl_4 and Rb_2ZnCl_4 :Cu.

Figure S3. (a) XRD patterns of pristine Cs₂ZnBr₄ and Cu-doped Cs₂ZnBr₄ with different Cu to Zn precursors ratio. (b) SEM image and the element distribution analysis through EDS mapping of the as-prepared Cu-doped Cs₂ZnBr₄ single crystals with Cu/Zn precursors ratio of 6/3 (Scale bar: 20 μm). (c) The PL spectra of pristine Cs₂ZnBr₄ and Cu-doped Cs₂ZnBr₄ with different Cu to Zn precursors ratio. (d) The RL spectra of pristine Cs₂ZnBr₄ and Cu-doped Cs₂ZnBr₄ with different Cu to Zn molar feed ratio. (e) High-resolution XPS spectrum of Cu 2p for Cu-doped Cs₂ZnBr₄ single crystals with Cu/Zn precursors ratio of 5/3 and (f) 6/3.

Figure S4. (a) The photographs of Cs_2ZnBr_4 and Cs_2ZnBr_4 :Cu under room light. (b) The photographs of Cs_2ZnBr_4 and Cs_2ZnBr_4 :Cu under 254 nm UV.

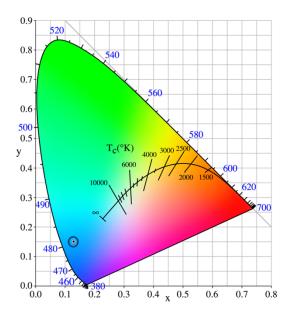
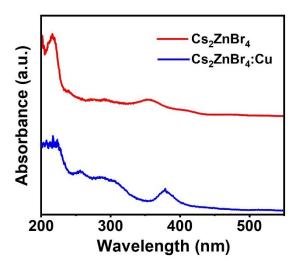
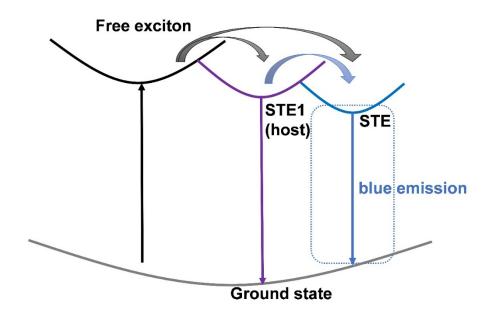
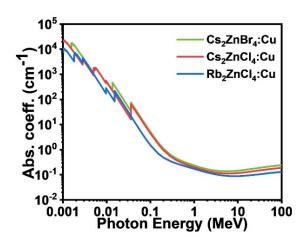
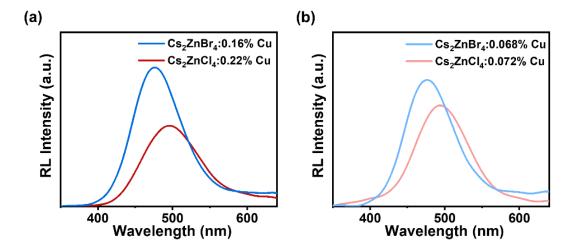

Figure S5. PLE spectra of Cs₂ZnBr₄:Cu, Cs₂ZnCl₄:Cu and Rb₂ZnCl₄:Cu.

Figure S6. Absolute PL quantum yield (PLQY) measurement results of Cs_2ZnBr_4 :Cu, Cs_2ZnCl_4 :Cu and Rb_2ZnCl_4 :Cu.

Figure S7. The PL spectra of Cs₂ZnBr₄ and Cs₂ZnBr₄:Cu.

Figure S8. The CIE (International Commission on Illumination) diagram of Cs_2ZnBr_4 :Cu. (0.1326,0.1458).


Figure S9. The UV-vis absorption spectra of Cs₂ZnBr₄ and Cs₂ZnBr₄:Cu.

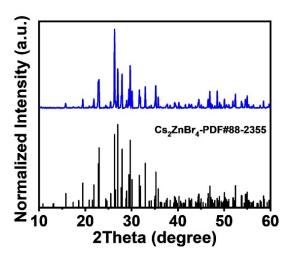

Figure S10. Schematic illustration of photophysical processes of the pure-blue emission in Cs_2ZnBr_4 :Cu.

Figure S11. X-ray absorption coefficients of Cs₂ZnBr₄:Cu, Cs₂ZnCl₄:Cu and Rb₂ZnCl₄:Cu as a function of photon energy from 1 keV to 100 MeV.

Figure S12. RL spectra of Cu-doped Cs₂ZnBr₄ and Cu-doped Cs₂ZnCl₄ samples with similar Cu content. RL spectra of Cu-doped Cs₂ZnBr₄ and Cu-doped Cs₂ZnCl₄ samples with (a) the relatively higher and (b) the relatively higher Cu content.

Figure S13. XRD pattern Cs₂ZnBr₄:Cu after storing in ambient atmosphere for four months.

Figure S14. Modulation transfer function (MTF) curve of Cs₂ZnBr₄:Cu film.