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Fig. S1 TEM images of CoCH

Fig. S2 SEM images of (a) CoCH@Co-MOF-10, (b) CoCH@Co-MOF-20, (c) CoCH@Co-MOF-30, (d) CoCH@Co-MOF-40, (e) 

CoCH@Co-MOF-50 and (f) CoCH@Co-MOF-60.
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Fig. S3 XPS survey spectra of CoCH@Co-MOF-30 and CoCH.

Fig. S4 LSV plots of commercial 20 wt.% Pt/C in 1.0 M KOH.
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Fig. S5 CV curves at 0.8-0.9 V vs. RHE in 1.0 M KOH solution for (a) CoCH, (b) CoCH@Co-MOF-10, (c) CoCH@Co-MOF-30, 

and (d) CoCH@Co-MOF-50.

Fig. S6 The equivalent circuit model for electrochemical impedance tests. Rs, R1, and Rct represent the resistances of the 

electrolyte, electrode porosity, and charge transfer, respectively. The constant phase angle element (CPE) represents the 

double-layer capacitance of a solid electrode in a real-world situation.
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Fig. S7 (a) XRD pattern, (b) Raman spectrum, (c) High-resolution XPS spectra of Co 2p and (d) XPS survey spectrum of Co-
MOF.

As shown in Fig. R1a, sharp peaks at 9.6°, 12.7°, and 18° refer to the crystalline facet of (200), (130), and (201)1, 
respectively, indicating the good crystallinity of the Co-MOF. Raman spectra were recorded to further confirm the 
successful fabrication of as-prepared Co-MOF samples (Fig. R1b). The peaks detected at 667 cm-1 match well with Co-O 
coordination bonds in Co-MOF, while another broad peak around 1357 cm-1 is associated with ring stretching vibration 
of Co-MOF2-3. The peak at 1577 cm-1 can be assigned to H2O. For the Co-MOF, the high-resolution XPS spectrum of Co 2p 
can be deconvoluted into four peaks shown in Fig. R1c, which are assigned to Co2+ (797.4 and 781.9 eV) and associated 
shakeup satellites (801.5 and 785.4 eV), respectively.4
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Fig. S8 (a-b) SEM images of Co-MOF.
The SEM image in Fig.R2 shows that numerous nanowires with high density homogeneously covering the carbon fiber 

papers. The TEM images are shown in Fig. R3. A lattice fringe pattern of a hexagonal crystal system is observed with a 
periodicity of ∼1.82 nm, which corresponds to the (100) lattice planes of Co-MOF along the crystallographic c axis. The 
STEM elemental mapping of Co-MOF (Fig. R3c) shows the uniform spatial distribution of elemental C, O, and Co. Fig. R4 
depicts the iR-corrected LSV plots of Co-MOF. The Co-MOF displays the electrocatalytic behavior with an overpotential 
of 358 mV vs. RHE for a cathodic current density of 10 mA cm-2. It is obviously larger than that of CoCH@Co-MOF-30 (238 
mV).



S7

Fig. S9 (a - b) TEM images, (c) HADDF-STEM images and element mapping images of Co-MOF.



S8

Fig. S10 LSV plots of Co-MOF in 1.0 M KOH.

Turnover frequency (TOF) calculation
The TOF values are calculated via the following equation5: 

𝑇𝑂𝐹=
|𝑗|𝐴
2𝑛𝐹

Where |j| is the current density at an overpotential of 300 mV during the LSV measurement in 1.0 M KOH solution. A 
stand for the area of the electrode (0.4 cm2) and F is the Faradaic constant (96485 C mol-1). 2 accounts for the electrons 
consumed to form H2 molecule from water (2 electrons for hydrogen evolution reaction). n represents the quantity of 
active sites, and n can be calculated in as follows.

𝑛=
𝑚𝑐𝑎𝑡 × 𝐶𝑤𝑡% ‒ 𝐶𝑜

𝑀𝐶𝑜

If assuming all the Co ions take part in the electrocatalytic reaction, the value of n can be calculated based on the XPS 
results:
where mcat is the catalyst loading on the carbon fiber cloth electrode (0.3 mg), Cwt% is the concentration of metal derived 
from XPS, the calculated n and TOF are as displayed in Table R1.

Fig.S11 Turnover frequency at 300 mV (vs. RHE) of different catalysts.

Fig. S12 SEM image of CoCH@Co-MOF-30 after HER durability test.
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Fig. S13 XRD patterns of CoCH@Co-MOF-30 before and after HER durability test.

Table S1 Comparison of the TOF of different samples.

Sample
TOF (S-

1)

CoCH 0.004

CoCH@Co-MOF-10 0.228

CoCH@Co-MOF-30 0.331

CoCH@Co-MOF-50 0.207

Co-MOF 0.067
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Table S2 Summary of HER performance for some reported MOF-based electrocatalysts in alkaline solution.

Catalyst
Counter

electrode
Scan rate
(mv s-1)

η10
Tafel slope
(mV dec-1)

Ref.

Fe(OH)x@Cu-MOFa graphite rod 5 112 76 6

Ni-MOF/Ni2P@EGa graphite rod 5 132 59 7

Ni-MOF@Pt (20 wt % Pt) a Pt mesh 5 102 88 8

NiFe-MS/MOF@NFa graphite rod 2 156c 82 9

Pt/MOF-Oa carbon rod 5 66 24 10

Co3S4/EC-MOFa carbon rod 1 84 82 11

Pt-NC/Ni-MOFa graphite rod - 25 42 12

Fe doped MOF CoV@CoOa platinum wire 5 78 52 13

CuCo-CAT/CCa graphite rod 5 52 52 14

NiRu0.13-BDCa carbon rod 2 34 32 15

Ni3(Ni3∙HAHATN)2 MOFb graphite 5 115 45 16

MFN-MOFsa graphite plate 0.5 79 30 17

FePc@Ni-MOFb graphite rod 10 334 72 18

NiRu-MOF/NFa graphite rod 5 51 90 19

Fe2Zn-MOFb platinum wire 5 221 174 20

Co-BDC/MoS2
a graphite rod 5 248 86 21

CoSx/Co-MOFa carbon rod 5 73 83 22

CoCH@Co-MOF-30a graphite rod 5 238 95 the work

Note: η10, overpotential (mV) at 10 mA cm-2; the unit of Tafel slope is mV dec-1. a The HER performance of catalysts is 

measured in 1.0 M KOH solution. b The HER performance of catalysts is measured in 0.1 M KOH solution. c The 

overpotential at 50 mA cm−2.
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