Supporting information

Facile synthesis of nanosized mordenite and Beta zeolites with improved catalytic performance: non-surfactant diquaternary ammonium compounds as organic structure-directing agents

Shaojie Li, Rim C. J. van de Poll, Nikolay Kosinov, and Emiel J. M. Hensen*

Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P. O. Box 513, 5600 MB Eindhoven, The Netherlands

*Corresponding author E-mail address: e.j.m.hensen@tue.nl

Fig. S1. Liquid-state ¹H NMR spectra of organic structure-directing agents (SDA) used in this work.

Fig. S2. XRD patterns of samples synthesized using the templates shown in Fig. 1 (recipe: Si/Al = 30).

Fig. S3. SEM images of calcined zeolites (recipe: Si/Al=30).

Fig. S4. Ar physisorption isotherms of calcined zeolites (recipe: Si/Al=30).

Fig. S5. Liquid-state ¹³C NMR spectra (red line) of SDA in D₂O solution: (a) SDA1, (b) SDA2, (c) SDA3, (d) SDA4, (e) SDA5 and (f) SDA6; Solid-state ¹H-¹³C CPMAS NMR spectra (black line) of asprepared samples: (a) Amor-SDA1-12; (b) MOR-SDA2-12; (c) BEA-SDA3-12; (d) BEA-SDA4-12; (e) BEA-SDA5-12 and (f) MOR-SDA6-12.

Fig. S6. (a) TG and (b) DTG of as-prepared samples.

Fig. S7. XRD patterns of solid samples obtained at different crystallization times: (a) MOR-12-Con, (b) MOR-SDA2-12 and (c) BEA-SDA3-12.

Fig. S8. SEM images of solid samples obtained at different crystallization times of BEA-SDA3-12.

Fig. S9. TEM images of solid products: (a) MOR-SDA2-12-(48 h) and (b) BEA-SDA3-12-(48 h).

Fig. S10. ¹H-¹³C HETCOR NMR spectra of as-prepared zeolites: (a) MOR-SDA2-12 and (b) BEA-SDA3-12 (assignment to different H atoms in SDA in top panels).

Fig. S11. ²⁹Si MAS NMR and ¹H-²⁹Si CPMAS spectra of the calcined zeolites: (a) MOR-12-Con, (b) MOR-SDA2-12, (c) BEA-12-Con and (d) BEA-SDA3-12.

Fig. S12. IR spectra of pyridine adsorbed on zeolites: (a) MOR-12-Con, (b) MOR-SDA2-12, (c) BEA-12-Con and (d) BEA-SDA3-12.

Fig. S13. ¹H NMR spectra of dehydrated samples: (a) MOR-12-Con and (b) MOR-SDA2-12.

Fig. S14. ADF-STEM images of reduced samples: (a) Pt/BEA-12-Con and (b) Pt/BEA-SDA3-12.

Fig. S15. The distribution of cracked products at ca. 50% $n-C_{16}$ conversion.

Chemical	Supplier	Price
1,6-dibromohexane	TCI, > 97.0%	52.00 €/500 g
α,α'-dibromo- <i>p</i> -xylene	TCI, > 98.0%	64.00 €/25 g
N-methypyrrolidine	TCI, > 98.0%	80.00 €/500 ml
N-methylpiperidine	TCI, > 99.0%	90.00 €/500 ml
1,4-diazabicyclo[2.2.2]octane	TCI, > 98.0%	91.00 €/500 g

Table S1. Prices of chemicals used for organic template synthesis.

Table S2. Solid yields and Si/Al ratios of zeolite samples obtained at a Si/Al gel ratio of 12.

Zeolite	Si/Al	Yield (%)
MOR-12-Con	8.4	69.9
MOR-SDA2-12	9.2	76.6
MOR-SDA6-12	9.8	81.1
BEA-SDA3-12	11.7	75.3
BEA-SDA4-12	11.9	60.3
BEA-SDA5-12	12.0	64.1
BEA-12-Con	11.3	59.7

Table S3. Solid yields and Si/Al ratios of zeolite samples obtained at a Si/Al gel ratio of 30.

Zeolite	Si/Al	Yield (%)
MOR-30-Con	13.4	43.4
BEA-SDA3-12	14.3	35.1
BEA-SDA4-12	15.8	51.4
BEA-SDA5-12	14.9	41.7

Zaclita	$S = (m^2 a^{-1})$	\mathbf{V} (am ³ a ⁻¹)	V_{meso} (cm ³ g ⁻¹)	$V_{micro} (cm^3 g^{-1})$	$S_{ext} (m^2 g^{-1})$
Zeome	S_{BET} (III g)	v _{tot} (cm [°] g)	(BJH)	(<i>t</i> - <i>plot</i>)	(t-plot)
MOR-30-Con	303	0.14	0.02	0.12	37
BEA-SDA3-30	648	0.98	0.79	0.10	370
BEA-SDA4-30	604	1.08	0.90	0.11	313
BEA-SDA5-30	549	0.85	0.69	0.10	295

Table S4. Textural properties of calcined zeolites determined by Ar physisorption.

Table S5. Changes in the solid yield and chemical compositions along with the synthesis time for MOR-12-Con.

Synthesis time (h)	Solid yield (wt %)	Si/Al
12	77.3	9.0
18	77.1	9.1
20	75.0	8.8
24	69.9	8.4

Table S6. Changes in the solid yield and chemical compositions along with the synthesis time for MOR-SDA2-12.

Synthesis time (h)	Solid yield (wt %)	Si/Al	Organic content (wt %)
12	75.1	9.1	8.7
60	74.7	9.2	9.2
66	76.0	9.1	9.6
72	76.6	9.2	9.1

Synthesis time (h)	Solid yield (wt %)	Si/Al	Organic content (wt %)
12	76.2	9.2	11.8
48	78.2	9.4	12.3
60	79.5	10.1	15.4
72	75.3	11.7	21.5

Table S7. Changes in the solid yield and chemical compositions along with the synthesis time for BEA-SDA3-12.

Table S8. Al and Si distributions of the proton form zeolites.

	²⁷ Al N	IMR ^a		²⁹ Si NMR		
Zeolite	Al ^{IV}	Al ^{VI}	Q4(2Al)/	Q ⁴ (1Al)	Q4(0A1)	Si/Al _F ^b
			Q ³ (0Al)			
MOR-12-Con	80	20	13	33	54	6.8
MOR-SDA2-12	83	17	10	27	63	8.5
BEA-12-Con	74	26	5	28	67	10.5
BEA-SDA3-12	70	30	7	25	68	10.3

^aAl^{IV} determined by integration of NMR signal between 20 and 100 ppm; Al^{VI} determined by integration of NMR signal between 20 and -50 ppm.

^bFramework Si/Al=2 Σ ISi(nAl)/ Σ 0.25·n·ISi(nAl) with assuming that Q³(0Al) does not contribute to the intensity of Q⁴(2Al)/Q³(0Al), n = 0-4.

Table S9. BAS distribution derived from deconvoluted IR spectra of MOR zeolites.

Zeolite	BAS in 8MR (%)	BAS in 8/12MR (%)	BAS in 12MR (%)
MOR-12-Con	49	30	21
MOR-SDA2-12	64	25	11

Table S10. Catalytic performance of the acylation of anisole with anhydride over BEA zeolites after 6 h reaction.

Zeolite	Acetic anhydride conversion (%)	<i>p</i> -MAP yield (selectivity) (%)
BEA-12-Con	48	39 (81)
BEA-SDA3-12	67	57 (85)

p-MAP: *p*-methoxyacetophenone

Scheme S1. Reaction pathways for benzylation of benzene with benzyl alcohol.

Scheme S2. Reaction pathway for acylation of anisole with acetic anhydride (*p*-methoxyacetophenone as the product).