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Surface photovoltage (SPV) spectra: SPV spectra based on lock-in amplifier were
carried out on a home-made system, which is consisted of a 500 W xenon lamp (LSH-
X500, Zolix), a monochromator (Omnik5006, Zolix) and a lock-in amplifier (model
SR830-DSP) with an optical chopper (model SR540) running at a frequency of 23 Hz.
The construction of the SPV sample cell is a sandwich-like structure of
FTO/mica/sample/FTO.

SPV transient measurements: SPV transient measurements were performed on a
home-made instrument. The sample was excited by the laser radiation pulse with the
wavelength of 355 nm from a Nd:YAG laser ((Q-smart 450, Quantel), and the response
was collected by the digital phosphor oscilloscope (TDS 5054, Tektronix). The
intensity of the pulse was adjusted by a neutral grey filter and measured with a Joule

meter (Starlite, Ophir, Inc.).
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Figure S1. XRD patterns of Ti-Fe,Os, Pc/Ti-Fe,0O3, CoPi/Ti-Fe,O; and CoPi/Pc/Ti-
FCQO},.
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Figure S2. XPS spectra of (a) Fe 2p, (b) O 1s, (c) Ti 2p from Ti-Fe,O;. XPS spectra of
(a) Fe 2p, (b) O 1s, (c) Ti 2p from CoPi/Pc/Ti-Fe,0s.
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Figure S3. XPS spectra of C 1s (a) and N 1s (b) from Pc/Ti-Fe,Os. (¢) XPS spectra of
Fe 2p from Ti-Fe,0O5 and Pc/Ti-Fe,0s.

The C 1s XPS spectrum is divided into three peaks at 284.5 eV, 285.9 eV and 288.1
eV, which are assigned to C-C, C-N and C=0O of H,Pc(COOH)s. The N 1s XPS
spectrum displays a peak at 399.5 eV, which is indexed to -NH of H,Pc(COOH)g. The
binding energy of Fe 2p is shifted after the introduction of H,Pc(COOH)g, which
indicates the electronic interaction between Pc and Ti-Fe,Os resulted from the the
chemical bonding.!* The above results confirm the H,Pc(COOH)z molecules are

bonded with Ti-Fe,O; sucessfully.
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Figure S4. (a) Current density-potential (J-V) curves of CoPi/Pc/Ti-Fe,O; with

different concentrations of Pc(COOH)g solution. (b) Photocurrent density at 1.23 V vs.

RHE and onset potential of CoPi/Pc/Ti-Fe,O; with different concentrations of

Pc(COOH);g solution. (¢) Current density-potential (J-V) curves of CoPi/Pc/Ti-Fe,0;

with different temperature of hydrothermal reaction. (d) Photocurrent density at 1.23 V

vs. RHE and onset potential of CoPi/Pc/Ti-Fe,O; with different temperature of

hydrothermal reaction.
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Figure S5. The XPS spectra of (a) C 1s and (b) N 1s from CoPi/Pc/Ti-Fe,0; after the

photostability measurement.
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Figure S6. The absorbed photon-to-current efficiency (APCE) of Ti-Fe,Os, Pc/Ti-
Fe,05, CoP1/Ti-Fe,05 and CoPi/Pc/Ti-Fe,0;5.

The absorbed photon-to-current efficiency (APCE) was calculated according to the

following equation:

IPCE
APCE = ——
LHE

LHE=1-10"4®W

in which A(}) is the absorbance at wavelength A.
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Figure S7. The time-resolved photoluminescence (TRPL) decay curves of CoPi/Ti-

Fe,0; and CoPi/Pc/Ti-Fe,05; with an excitation wavelength of 405 nm.



Table S1. Comparison of the photocurrent density of CoPi modified Fe,O; in the

reported literatures with our result at 1.23 V vs. RHE under AM 1.5 G illumination

Composite Phtocurrent density ~ Electrolyte Ref
CoPi/P-Fe,04 0.89 mA/cm? 1 M NaOH 4
CoPi/Fe,03-PN 1.6 mA/cm? 0.1 M KOH 3
a-Fe;03/Sb,S;/Co-Pi 1.14 mA/cm? IM NaOH 6
CoPi/Al,05/Ti-Fe,05 1.32 mA/cm? 1 M KOH 7
Co-Pi/h-FeOOH/Fe,04 1.31 mA/cm? 1 M NaOH 8
Co-Pi/Fe,0;-NaBH,4 1.29 mA/cm? 1 M NaOH ?
Fe,O3/R-CN/CoPi 0.7 mA/cm? 1 M NaOH 10
CoPi/H,-TiO,/H,-Fe,05 6.0 mA/cm? 1 M KOH 1
Fe,0s/FeB/CoPi 1.9 mA/cm? 1 M NaOH 12
CoPi/Co3;04/Fe;04 2.7 mA/cm? 1 M KOH 13
CoPi/Ag/Fe,05 4.68 mA/cm? 1 M NaOH 14
CoPi/Pc/Ti-Fe,0; 1.72 mA/cm? 1 M KOH In this

work




Table S2. Theoretical calculation results about HUMO and LOMO of Pc(COOH)g

Orbital energy (eV) Molecular orbital diagrams
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HOMO-2 -7.63

HOMO-3 -7.84




Multiple perspective structure

Binding energy (kcal/mol)

Table S3. The binding mode geometry of Ti-Fe,O3 and Pc(COOH)g

X
XJ
X

R
A |
r
-_o,

§

J |

!
1
4

*
¢ v

-21.71556571




v,

L
/)
S

4]

-

._’_‘-,_
g e )

“\

-22.03046060

N
>4

‘I

-
(4
o

4.,

’.'
-

b
A

L
7
S

el
. =
4
| g
¥
|
)
"
g
—3

4}]

SR I

s % - M - - b
PO/ O




-17.80578118




)
:vad-uv: .!.: ..? «-v

i.a.\.,f.!!

‘.,'_.ﬂ,,‘_.__..,_u,.lwl_.

[ Dacl 57 LoD e 1

on
N
©
oy
7
©
Ve
9.
~
o




Table S4. The fitted resistances of Ti-Fe,O;, Pc/Ti-Fe,O3;, CoPi/Ti-Fe,Os; and
CoPi/Pc/Ti-Fe,O; photoanodes

Sample Re (©) Ren ()
Ti-Fe,O; 556.6 3151.0
Pc/Ti-Fe, 04 169.6 758.1
CoPi/Ti-Fe, 05 139.2 648.1

CoPi/Pc/Ti-Fe,0; 136.2 481.3
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