Electronic Supplementary Information

Oxidative *versus* Basic Asynchronous Hydrogen Atom Transfer Reactions of Mn(III)-Hydroxo and Mn(III)-Aqua Complexes

Jisheng Zhang,^a Yong-Min Lee,^a Mi Sook Seo,^a Youngsuk Kim,^c Eunsung Lee,^c Shunichi Fukuzumi^{*ab} and Wonwoo Nam^{*a}

 ^a Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
 ^b Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
 ^c Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea

*E-mail: wwnam@ewha.ac.kr, fukuzumi@chem.eng.osaka-u.ac.jp

Table of Contents

Table S1	3
Table S2	4
Table S3	5
Table S4	6
Table S5	7
Table S6	8
Table S7	9
Table S8	10
Fig. S1	11
Fig. S2	12
Fig. S3	13
Fig. S4	14
Fig. S5	15
Fig. S6	16
Fig. S7	17
Fig. S8	18
Fig. S9	19
Fig. S10	20
Fig. S11	21
Fig. S12	22

	[(dpaq ^{5NO2})Mn ^{III} (OH)](OTf)	[(dpaq ^{5Me})Mn ^{III} (OH)](OTf) ^a	[(dpaq ^{5OMe})Mn ^{III} (OH)](OTf)
empirical formula	$C_{24}H_{20}F_3MnN_6O_7S$	C ₂₇ H ₂₆ F ₃ MnN ₆ O ₅ S	C ₂₅ H ₂₃ F ₃ MnN ₅ O ₆ S
formula weight	648.46	658.54	633.48
temperature (K)	150 K	150 K	150 K
Wavelength (Å)	0.71073	0.71073	0.71073
crystal system	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/c$
unit cell dimensions			
<i>a</i> (Å)	8.8110(17)	9.1663(6)	12.8436(9)
<i>b</i> (Å)	22.663(4)	24.9767(17)	13.4456(9)
<i>c</i> (Å)	13.337(3)	12.4192(9)	15.6922(10)
α(°)	90	90	90
eta (°)	100.823(10)	96.255(3)	107.733(3)
γ(°)	90	90	90
volume (Å ⁻³)	2615.8(9)	2826.4(3)	2581.1(3)
Ζ	4	4	4
calculated density (g/cm ⁻³)	1.647	1.548	1.630
absorption coefficient (mm ⁻¹)	0.664	0.610	0.667
reflections collected	49120	53032	95609
absorption correction	multi-scan ($T_{min} = 0.920$, $T_{max} = 0.970$)	multi-scan ($T_{min} = 0.880$, $T_{max} = 0.970$)	multi-scan ($T_{min} = 0.900$, $T_{max} = 0.980$)
independent reflections	6508	7031	6697
goodness-of-fit on F^2	0.998	1.079	1.034
$R [F^2 > 2 \text{sigma}(F^2)]$	0.0370	0.0260	0.0374
wR^2	0.1318	0.0673	0.0864

Table S1 Crystallographic data and refinements for $[(dpaq^{5R})Mn^{III}(OH)]^+$ (R = NO₂, Me, and OMe)

^a Actual formula of this crystal structure is included an CH₃CN solvent molecule.

	[(dpaq ^{5NO2})Mn ^{III} (OH)] ⁺	[(dpaq ^{5Me})Mn ^{III} (OH)] ⁺	[(dpaq ^{5OMe})Mn ^{III} (OH)] ⁺
bond distance (Å)			
Mn1-N4	1.9739(15)	1.9703(9)	1.9831(16)
Mn1-O1	1.8081(15)	1.8073(9)	1.8038(14)
Mn1-N5	2.0592(15)	2.0592(10)	2.0774(17)
Mn1-N2	2.1685(17)	2.1580(10)	2.1901(16)
Mn1-N1	2.1937(17)	2.2256(10)	2.2033(17)
Mn1-N3	2.2284(17)	2.2458(10)	2.2116(16)
bond angle (°)			
O1-Mn1-N4	174.46(6)	178.4(4)	178.54(7)
O1-Mn1-N5	94.81(6)	98.72(4)	99.12(7)
N4-Mn1-N5	79.79(6)	79.76(4)	80.05(6)
O1-Mn1-N2	102.78(6)	98.65(4)	99.09(7)
N4-Mn1-N2	82.59(6)	82.89(4)	81.72(6)
N5-Mn1-N2	162.36(6)	162.57(4)	161.73(6)
O1-Mn1-N1	91.73(7)	88.16(4)	93.92(7)
N4-Mn1-N1	88.21(6)	92.67(4)	87.44(6)
N5-Mn1-N1	102.14(6)	102.86(4)	102.27(6)
N2-Mn1-N1	76.39(6)	76.18(4)	77.98(6)
O1-Mn1-N3	95.97(7)	94.75(4)	87.00(6)
N4-Mn1-N3	86.52(6)	85.12(4)	92.03(6)
N5-Mn1-N3	102.85(6)	103.00(4)	103.50(6)
N2-Mn1-N4	76.77(6)	77.05(4)	75.96(6)
N1-Mn1-N3	153.09(6)	153.21(4)	153.73(6)

Table S2 Selected bond distances (Å) and angles (°) for $[(dpaq^{5R})Mn^{III}(OH)]^+$

R	$k_2, \mathrm{M}^{-1} \mathrm{s}^{-1}$
NO ₂	4.2(3)
Cl	2.3(2)
Н	1.7(1)
Me	1.6(1)
OMe	1.5(1)

Table S3 Second-order rate constants (k_2) for the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH by $[(dpaq^{5R})Mn^{III}(OH)]^+$ (R = NO₂, Cl, H, Me, and OMe) under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K

R	$k_{\rm et}, { m M}^{-1} { m s}^{-1}$
NO ₂	95(8)
Cl	30(3)
Н	14(1)
Me	11(1)
OMe	7.1(6)

Table S4 Second-order rate constants (k_{et}) for the electron transfer from Me₁₀Fc to $[(dpaq^{5R})Mn^{III}(OH)]^+$ (R = NO₂, Cl, H, Me, and OMe) under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K

	[(dpaq ^{5Me})Mn ^{III} (OH ₂)](OTf) ₂ ^a
empirical formula	$C_{52}H_{48}F_{12}Mn_2N_{10}O_{16}S_4$
formula weight	1535.12
temperature (K)	100
wavelength (Å)	0.7000
crystal system	triclinic
space group	<i>P</i> -1
unit cell dimensions	
<i>a</i> (Å)	10.012(2)
<i>b</i> (Å)	15.900(3)
<i>c</i> (Å)	19.840(4)
α(°)	88.44(3)
β(°)	77.95(3)
γ(°)	89.88(3)
volume (Å ³)	3087.6(11)
Z	2
calculated density (g/cm ⁻³)	1.652
absorption coefficient (mm ⁻¹)	0.647
reflections collected	41817
absorption correction	-
independent reflections	11486
goodness-of-fit on F^2	1.063
$R[F^2 > 2\text{sigma}(F^2)]$	0.1067
wR^2	0.2567

Table S5 Crystallographic data and refinements for [(dpaq^{5Me})Mn^{III}(OH₂)]²⁺

 $^{\it a}$ Refinement details for [(dpaq $^{5Me})Mn^{III}(OH_2)](OTf)_2$:

1. Twinned data refinement^{S1} Scales: 0.696(3) 0.304(3)

 $2. \ Fixed \ U_{iso}$

At 1.2 times of: All C(H) groups, All C(H,H) groups

At 1.5 times of: All C(H,H,H) groups, All O(H,H) groups

3.a Rotating group: O31(H31A,H31B), O62(H62A,H62B)

3.b Secondary CH2 refined with riding coordinates:

C15(H15A,H15B), C17(H17A,H17B), C24(H24A,H24B), C46(H46A,H46B), C48(H48A,H48B), C56(H56A,H56B)

3.c Aromatic/amide H refined with riding coordinates:

C2(H2), C3(H3), C4(H4), C8(H8), C9(H9), C19(H19), C20(H20), C21(H21),C22(H22), C26(H26), C27(H27), C28(H28), C29(H29), C33(H33), C34(H34), C38(H38), C39(H39), C40(H40), C50(H50), C51(H51), C52(H52), C53(H53), C57(H57),

C58(H58), C59(H59), C60(H60)

3.d Idealized Me refined as rotating group:

C7(H7A,H7B,H7C), C36(H36A,H36B,H36C)

(S1) A. L. Spek, Structure Validation in Chemical Crystallography, Acta Cryst., 2009, D65, 148-155.

	$[(dpaq^{5Me})Mn^{III}(OH_2)]^{2+}$
bond distance (Å)	
Mn1-N4	1.939(5)
Mn1-O1	1.961(4)
Mn1-N5	2.018(5)
Mn1-N2	2,121(5)
Mn1-N1	2.226(6)
Mn1-N3	2.247(6)
bond angle (°)	
O1-Mn1-N4	178.0(2)
O1-Mn1-N5	97.57(19)
N4-Mn1-N5	81.1(2)
O1-Mn1-N2	98.12(19)
N4-Mn1-N2	83.2(2)
N5-Mn1-N2	164.2(2)
O1-Mn1-N1	90.7(2)
N4-Mn1-N1	91.1(2)
N5-Mn1-N1	100.0(2)
N2-Mn1-N1	78.1(2)
O1-Mn1-N3	88.6(2)
N4-Mn1-N3	90.3(2)
N5-Mn1-N3	104.0(2)
N2-Mn1-N4	78.1(2)
N1-Mn1-N3	155.89(19)

Table S6 Selected bond distances (Å) and angles (°) for $[(dpaq^{5Me})Mn^{III}(OH_2)]^{2+}$

R	$k_2, \mathrm{M}^{-1} \mathrm{s}^{-1}$
NO ₂	$3.4(2) \times 10$
Cl	$1.1(1) \times 10^3$
Н	$1.6(1) \times 10^2$
Me	$2.1(1) imes 10^2$
OMe	$4.5(3) \times 10^{3}$

Table S7 Second-order rate constants (k_2) for the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH by $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ (R = NO₂, Cl, H, Me, and OMe) in MeCN at 298 K

R	$k_2, \mathbf{M}^{-1} \mathbf{s}^{-1}$
NO ₂	$2.1(1) \times 10^{-1}$
Cl	2.0(1)
Н	1.8(1)
Me	2.0(1)
OMe	$3.0(2) \times 10^2$

Table S8 Second-order rate constants (k_2) for the oxidation of 2,4-di-*tert*-butylphenol by $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ (R = NO₂, Cl, H, Me, and OMe) in MeCN at 298 K

Fig. S1 Visible absorption changes observed in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH (10 mM) by $[(dpaq^{5R})Mn^{III}(OH)]^+$ [1.0 mM; R = (a) NO₂, (b) Cl, (c) H, (d) Me, and (e) OMe] under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K. Insets show the decay time courses of absorbance at 760 nm due to $[(dpaq^{5R})Mn^{III}(OH)]^+$.

Fig. S2 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH by $[(dpaq^{5NO2})Mn^{III}(OH)]^+$ under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K. Peaks at m/z = 482.2 and 429.2 correspond to $[(dpaq^{5NO2})Mn^{II}]^+$ (*calc. m/z* = 482.1) and $[dpaq^{5NO2} + 2H^+]^+$ (*calc. m/z* = 429.2), respectively. (b) EPR spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH by $[(dpaq^{5NO2})Mn^{III}(OH)]^+$ under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K. Spectrum was measured at 77 K. Spectrum shows the signals of Mn(II) species together with phenoxyl radical (i.e., 4-MeO-2,6-^{*t*}Bu₂C₆H₂O[•]).

Fig. S3 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH by $[(dpaq^{5Cl})Mn^{III}(OH)]^+$ under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K. Peaks at m/z = 471.2 and 418.2 correspond to $[(dpaq^{5Cl})Mn^{II}]^+$ (*calc.* m/z = 471.1) and $[dpaq^{5Cl} + 2H^+]^+$ (*calc.* m/z = 418.1), respectively. (b) EPR spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH by $[(dpaq^{5Cl})Mn^{III}(OH)]^+$ under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K. Spectrum was measured at 77 K. Spectrum shows the signals of Mn(II) species together with phenoxyl radical (i.e., 4-MeO-2,6-^{*t*}Bu₂C₆H₂O[•]).

Fig. S4 Visible absorption spectral changes observed in electron transfer from $Me_{10}Fc$ (1.0 mM) to $[(dpaq^{5R})Mn^{III}(OH)]^+$ [0.10 mM; R = (a) Cl, (b) H, (c) Me, and (d) OMe] under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K. Insets show the time courses of absorbance at 780 nm due to the formation of $Me_{10}Fc^+$.

Fig. S5 Plots of pseudo-first-order rate constants (k_{obs}) *vs.* concentration of Me₁₀Fc for the electron transfer from Me₁₀Fc to [(dpaq^{5R})Mn^{III}(OH)]⁺ (0.10 mM; R = NO₂, Cl, H, Me, and OMe) under an Ar atmosphere in MeCN/H₂O (98:2 v/v) at 298 K.

Fig. S6 UV-vis spectral changes for the formation of $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ [blue line; R = (a) NO₂, (b) Cl, (c) Me, and (d) OMe] upon addition of HOTf (1.0 equiv.) to an MeCN solution of $[(dpaq^{5R})Mn^{III}(OH)]^+$ (0.10 mM for R = NO₂ and 0.20 mM for R = Cl, Me, and OMe) at 298 K for R = NO₂, Cl and Me and 253 K for OMe. Insets show that all $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ (blue line) was returned back to $[(dpaq^{5R})Mn^{III}(OH)]^+$ (red line) upon addition of triethylamine (1.0 equiv.) to $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ in MeCN at 298 K for R = NO₂, Cl, and Me and 253 K for OMe.

Fig. S7 Visible spectral changes observed in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH [(a, b) 6.0 mM and (c) 1.5 mM] by $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ [0.10 mM; R = (a) Cl, (b) H, and (c) OMe] in MeCN at 298 K. Insets show the decay time courses of absorbance at 440 nm (a, b) and 450 nm (c) due to $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$.

Fig. S8 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-'Bu₂C₆H₂OH by $[(dpaq^{5Cl})Mn^{III}(OH_2)]^{2+}$ under an Ar atmosphere in MeCN at 298 K. Peaks at m/z = 418.1 and 620.8 correspond to $[dpaq^{5Cl} + 2H^+]^+$ (*calc.* m/z = 418.1) and $[(dpaq^{5Cl})Mn^{II}(HOTf)]^+$ (*calc.* m/z = 621.0), respectively. (b) EPR spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-'Bu₂C₆H₂OH by $[(dpaq^{5Cl})Mn^{III}(OH_2)]^{2+}$ under an Ar atmosphere in MeCN at 298 K. Spectrum was measured at 77 K. Spectrum shows the signals of Mn(II) species together with phenoxyl radical (i.e., 4-MeO-2,6-'Bu₂C₆H₂O⁺).

Fig. S9 ¹H NMR spectra of the authentic references, (a) 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH and (b) 2,6di-*tert*-butyl-1,4-benzoquinone, and (c) the complete reaction solution, which was obtained in the oxidation of 4-MeO-2,6-^{*t*}Bu₂C₆H₂OH (20 mM) by $[(dpaq^{5OMe})Mn^{III}(OH_2)]^{2+}$ (4.0 mM) in CD₃CN at 298 K. Spectra were recorded in CD₃CN at 298 K. The peaks marked with * and S were originated from the dpaq^{5OMe} ligand and solvent, respectively.

Fig. S10 (a) EPR spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-^{*i*}Bu₂C₆H₂OH by $[(dpaq^{5OMe})Mn^{III}(OH_2)]^{2+}$ under an Ar atmosphere in MeCN at 298 K. Spectrum was measured at 77 K. Spectrum shows the signals of Mn(II) species together with phenoxyl radical (i.e., 4-MeO-2,6-^{*i*}Bu₂C₆H₂O[•]). (b) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of 4-MeO-2,6-^{*i*}Bu₂C₆H₂OH by $[(dpaq^{5OMe})Mn^{III}(OH_2)]^{2+}$ under an Ar atmosphere in MeCN at 298 K. Peaks at m/z = 414.2 and 617.0 correspond to $[dpaq^{5OMe} + 2H^+]^+$ (*calc.* m/z = 414.2) and $[(dpaq^{5OMe})Mn^{II}(HOTf)]^+$ (*calc.* m/z = 617.1), respectively.

Fig. S11 (a – d) UV-vis spectral changes observed in the oxidation of 2,4-di-*tert*-butylphenol (20 mM) by $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ [0.20 mM; R = (a) NO₂, (b) Cl, (c) H, and (d) Me] in MeCN at 298 K. Insets show the decay time courses of absorbance at 440 nm due to $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$. (e) Stopped-flow spectral changes observed in the oxidation of 2,4-di-*tert*-butylphenol (20 mM) by $[(dpaq^{5OMe})Mn^{III}(OH_2)]^{2+}$ (0.20 mM) in MeCN at 298 K. Inset shows the decay time course of absorbance at 450 nm due to $[(dpaq^{5OMe})Mn^{III}(OH_2)]^{2+}$.

Fig. S12 ¹H NMR spectra of the authentic references, (a) 2,4-di-*tert*-butylphenol and (b) 3,3',5,5'-tetra-*tert*-butylbiphenyl-2,2'-diol, and (c – f) the complete reaction solutions, which were obtained in the oxidation of 2,4-di-*tert*-butylphenol (40 mM) by $[(dpaq^{5R})Mn^{III}(OH_2)]^{2+}$ [4.0 mM; R = (c) NO₂, (d) Cl, (e) Me, and (f) OMe] in CD₃CN at 298 K. All spectra were recorded in CD₃CN at 298 K. The peaks marked with * in (c – f) were originated from the dpaq^{5R} ligands.