Supporting Information

Electronic modulation of cobalt-molybdenum oxide via Te doping embedded in

carbon matrix for superior overall water splitting

Luqi Wang^a, Hanzhi Yu^a, Sheng Zhao^a, Hui Ma^b, Linlin Li^{*a}, Feng Hu^a, Lei Li^{*b}, Hui Pan^c, K. M. El-Khatib^d and Shengjie Peng^{*a}

^aCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mails: lilinlin@nuaa.edu.cn pengshengjie@nuaa.edu.cn
^bCollege of Biological, Chemical Sciences and Engineering, Jiaxing University, 118
Jiahang Road, Jiaxing, Zhejiang, 314001, PR China.
E-mail: leili@mail.zjxu.edu.cn
^cInstitute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao 999078, P. R. China
^dChemical Engineering and Pilot Plant Department, Engineering Research Institute National Research Centre 33 El-Buhouth St., Dokki, Cairo 12622, Egypt

TOF calculation

Turnover frequency (TOF) was calculated via the following formula according to previous reports.

TOF per site =
$$\frac{\# \text{ Total Oxygen Turn Over/cm}^2 \text{ geometric area}}{\# \text{ Surface Sites/cm}^2 \text{ geometric area}}$$

The total number of oxygens turnovers was calculated from the current density using the following

equation:

$$\#O_2 = \left(j\frac{mA}{cm^2}\right) \left(\frac{1C \text{ s}^{-1}}{1000 \text{ mA}}\right) \left(\frac{1 \text{ mol s}^{-1}}{1000 \text{ mA}}\right) \left(\frac{1 \text{ mol } O_2}{4 \text{ mol e}^{-1}}\right) \left(\frac{6.022 \times 10^{23} \text{O}_2 \text{ molecules}}{1 \text{ mol } O_2}\right) = J \times 1.56 \times 10^{15} \frac{\text{O}_2/\text{s}}{\text{cm}^2} \text{per}\frac{\text{mA}}{\text{cm}^2}$$

The Co content of Te-CoMoO₃@C is determined by the ICP. The mass loading on the electrode is $\sim 0.30 \text{ mg cm}^{-2}$. Thus, n is calculated as:

$$n(\text{Te-CoMoO}_{3}@\text{C}) = \frac{4.67\% \times 0.30 \frac{\text{mg}}{\text{cm}^{2}}}{58.93 \frac{\text{g}}{\text{mol}}} = 2.38 \times 10^{-7} \text{ mol/cm}^{2}$$

 $N_{active}^{Te-CoMoO_3@C} = 6.022 \times 10^{23} \text{mol}^{-1} \times 2.38 \times 10^{-7} \text{mol/cm}^2 = 1.433 \times 10^{17} \text{ atoms/cm}^2$

Fig. S1. Optical photographs of (a) filter paper, (b) Co/Mo salts adsorbed on the filter paper, and (c) Te-CoMoO₃@C.

Fig. S2. (a) Low-magnified and (b) high-magnified SEM images of calcined filter paper.

Fig. S3. (a) Low-magnified and (b) high-magnified SEM images of CoMoO₃@C.

Fig. S4. (a) N_2 adsorption/desorption isotherm and (b) the corresponding pore size distribution of Te-CoMoO₃@C, Te-CoMoO₃, CoMoO₃@C, and bare carbon.

Fig. S5. EDX pattern of Te-CoMoO₃@C.

Fig. S6. XRD pattern of CoMoO₃@C and bare carbon.

Fig. S7. XRD patterns of the Te-CoMoO₃@C with various doping amounts of Te.

Fig. S8. XPS full spectra of (a) CoMoO₃@C and (b) Te-CoMoO₃@C.

Fig. S9. OER LSV polarization curves normalized to catalyst loading of RuO_2 , bare carbon, $CoMoO_3@C$, Te-CoMoO₃ and Te-CoMoO₃@C.

Fig. S10. (a) The ECSA of bare carbon, CoMoO₃@C, Te-CoMoO₃ and Te-CoMoO₃@C. (b) HER and (c) OER polarization curve normalized by the ECSA for bare carbon, CoMoO₃@C, Te-CoMoO₃ and Te-CoMoO₃@C.

Fig. S11. OER performances of 1-Te-CoMoO₃@C, 2-Te-CoMoO₃@C, and 3-Te-CoMoO₃@C.

Fig. S12. OER performances of Te-CoMoO₃@C catalysts obtained under different temperatures.

Fig. S13. Mott-Schottky curves of CoMoO₃@C and Te-CoMoO₃@C.

Fig. S14. Cyclic voltammograms of different samples from 20 to 140 mV s⁻¹ between 0.77 and 0.87 V.

Fig. S15. Chronopotentiometry curves of Te-CoMoO₃@C during OER process.

Fig. S16. HER performances of Te-CoMoO₃@C catalysts obtained under different temperatures.

Fig. S17. HER performances of 1-Te-CoMoO₃@C, 2-Te-CoMoO₃@C, and 3-Te-CoMoO₃@C.

Fig. S18. HER LSV polarization curves normalized to catalyst loading of Pt/C, bare carbon, CoMoO₃@C, Te-CoMoO₃ and Te-CoMoO₃@C.

Fig. S19. Chronopotentiometry curves of Te-CoMoO₃@C during HER process.

Fig. S20. Chronopotentiometry curves of Te-CoMoO₃@C during overall water splitting process.

Fig. S21. SEM images of Te-CoMoO₃@C after OER (a) and (b) HER cycling tests.

Fig. S22. XRD patterns of Te-CoMoO₃@C after water splitting cycling tests.

Fig. S23. (a) XPS survey spectra and high-resolution XPS spectra of (b) Te 3d, (c) Co 2p, and (d) Mo 3d for Te-CoMoO₃@C after water splitting cycling tests.

Fig. S24. Amount of hydrogen theoretically calculated and experimentally measured and the Faradaic efficiency.

Samples	Te (wt.%)	Co (wt.%)	Mo (wt.%)
Te-CoMoO ₃ @C	0.83	4.67	18.32

Table S1. Inductive Coupled Plasma (ICP) results of prepared samples.

Table S2. The fitting parameters of the XPS spectra of O2p for Te-CoMoO₃@C and CoMoO₃@C.

Sample	Peak	Position	peak area
	M-O	530.42	11705.17
Te-CoMoO ₃ @C	O_v	531.13	6338.04
	Н-О-Н	532.84	5005.15
	M-O	530.51	51536.50
CoMoO ₃ @C	$O_{\rm v}$	531.25	3896.50
	Н-О-Н	532.77	16536.50

Table S3. OER Fitting results of EIS for Te-CoMoO₃/C, Te-CoMoO₃, CoMoO₃/C, bare carbon, and

RuO₂.

Catalysts	Rs (ohm)	Rct (ohm)	Error (%)
Te-CoMoO ₃ @C	1.181	3.042	0.692
Te-CoMoO ₃	1.326	4.683	0.688
CoMoO ₃ @C	1.558	6.919	0.795
Bare carbon	1.841	13.59	0.764
RuO ₂	1.294	3.545	0.748

Table S4. Comparison of overpotential (10 mA cm⁻²) and Tafel slopes for OER between Te-CoMoO₃@C and various reported catalysts.

Catalysts	Overpotential (mV) 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Reference
Te-CoMoO ₃ @C	218	39	This work
Te/FeNiOOH-NC	220	52	ACS Appl. Mater. Interfaces. 2021, 13, 10972-10978.
GB-(Fe _{0.66} Co _{0.34}) ₂ B/RGO	221	39	Appl. Catal. B Environ. 2020, 305, 121034.
Ta-NiFe LDH	228	58.95	Chem. Eng. J. 2021, 403, 126297.
Co _{1.6} Ni _{0.4} P ₄ O ₁₂ -C	230	51.1	Adv. Funct. Mater. 2020, 30, 1910498.
Ni-MnO ₂	233	36	Adv. Energy Mater. 2020, 10, 2001059.
V-NiCoP	234	35	J. Mater. Chem. A. 2021, 9, 12203- 12213.
Fe _{0.9} Ni _{2.1} S ₂ @NF	235	64	Adv. Energy Mater. 2020, 10, 2001963.
Ni-Mo-P	235	108.4	Appl. Catal. B Environ. 2021, 298,

			120494.
Mo-Ni ₂ S ₂ /Ni _x P _y	236	60.6	Adv. Energy Mater. 2020, 10,
1110 111302/111xi y	230	00.0	1903891.
S-NiFe-LDH-9-A	240	42	Appl. Catal. B Environ. 2021, 292,
			120150.
o-CoTe ₂ P@HPC/CNTs	241	46	ACS Nano. 2020, 14, 6968-6979.
Fe, N1-CoS ₂	242	35	ACS Catal. 2022, 12, 3/43-3/51.
30%Ce-NiFe-LDH	242	32	Energy Environ. Sci. 2020, 13, 2949-
	240	10 2	2956. Small 2022, 18, 2102106
$\Gamma = CoS_x HSS$	249	48.5	Siliali. 2022, 18, 2103100.
$COODT-W_D-CO_V$	231	40.1	Adv. Energy Mater 2020, 10
Fe _x Ni _{3-x} S ₂ @NF	252	64	Adv. Energy Mater. $2020, 10,$
			2001905. April Catal D Environ 2022 201
NiNCs-1T-Mn-VTe ₂ NS	258	65.11	Appl. Catal. B Environ. 2022, 301,
$0.5E_{2}$ NiC ₂ O @CC	258	62.5	120780. Small 2022 18 2106187
0.51°E-INIC0204@CC	238	03.5	Siliali. 2022, 18, 2100187.
Co NH Mos /T:O USa	260	65	Name Energy 2021 82 105750
$C_0, IND-INIOS_2/11O_2HSS$	260	63	Nano Energy. 2021, 82, 103730.
Ea Ca O HHNDa	262	42	Adv. Motor 2020 22 2002225
re-C0 ₃ O ₄ HHNPS	202	45	Adv. Matel. 2020, 52, 2002255.
			Energy Environ Sci 2021 14 265
$Fe_{0.4}Co_{0.6}Se_2$	270	36	272 Elivitoli. Sci. 2021, 14, 505-
			575.
N-CoS ₂ SSs	278	56	Adv. Sci. 2020, 7, 2001178.
	282	61	J. Mater. Chem. A. 2022, 10, 3102-
re-mise mss/UNIs	282	01	3111.
R Co O	202	95 2	Adv. Energy Mater. 2021, 11,
P-C0 ₃ O ₄	203	83.3	2100358.
$C_{2}M_{2}O_{1}$	200	87.5	Angew. Chem. Int. Ed. 2020, 59,
021110308	290	01.5	11948-11957.
W-NiCoP/NF	295	99	Appl. Mater. Today. 2021, 24, 101154.
Fe-Mo/Te-2	300	45.6	Chem. Eng. J. 2021, 423, 130168.
Te-Co ₃ O ₄	313	75	Int. J. Energy Res. 2021, 10, 1-10.

Table S5. HER fitting results of EIS for Te-CoMoO₃@C, Te-CoMoO₃, CoMoO₃@C, bare carbon, and Pt/C.

Catalysts	Rs (ohm)	Rct (ohm)	Error (%)
Te-CoMoO ₃ @C	1.264	5.162	0.609
Te-CoMoO ₃	1.402	6.532	0.701
CoMoO ₃ @C	1.573	7.215	0.651
Bare carbon	1.728	11.36	0.770
Pt/C	1.153	3.531	0.686

Table S6. The comparison of water splitting performances of Te-CoMoO₃@C and other catalysts in the literature.

Catalysts	Overpotential (mV) 10 mA cm ⁻²	Stability (h)	Reference
Te-CoMoO ₃ @C	1.54	100	This work
DV-MnO ₂	1.55	100	Adv. Funct. Mater. 2021, 31, 2010718.
Fe-Ni ₅ P ₄ /NiFeOH- 350	1.55	20	Appl. Catal. B Environ. 2021, 291, 119987.
V-NiCoP	1.56	56	J. Mater. Chem. A. 2021, 9, 12203- 12213.
WN-Ni@ N, P-CNT- 800	1.57	10	Appl. Catal. B Environ. 2021, 298, 120511.
Fe-doped NiSe NSs/CNTs	1.57	24	J. Mater. Chem. A. 2022, 10, 3102- 3111.
Co, Nb- MoS ₂ /TiO ₂ HSs	1.57	60	Nano Energy. 2021, 82, 105750.
E-Mo-NiCoP-3	1.58	48	Nano-Micro Letters. 2019, 11, 55.
P-Co ₃ O ₄	1.6	60	Adv. Energy Mater. 2021, 11, 2100358.
Ni-Fe-K _{0.23} MnO ₂ CNFs-300	1.62	24	Small. 2020, 16, 1905223.
Mn-CoP@ Mn- CoOOH	1.64	24	Appl. Catal. B Environ. 2021, 292, 120172.

Table S7. Overall water splitting fitting results of EIS for Te-CoMoO₃@C, Te-CoMoO₃, CoMoO₃@C,

bare carbon, and $Pt/C \parallel RuO_2$.

Catalysts	Rs (ohm)	Rct (ohm)	Error (%)
Te-CoMoO ₃ @C	1.035	2.435	0.863
Te-CoMoO ₃	1.468	8.536	1.328
CoMoO ₃ @C	1.657	10.368	1.143
Bare carbon	1.983	14.723	0.953
Pt/C RuO ₂	1.172	3.879	1.035