Quantitative analysis of molecular surface: systematic application on sodiation mechanism of benzoquinone-based pillared compound as cathode

Zhaopeng Sun, Luojia Liu, Meng Zhang, Weiwei Huang

Contents

1. Properties of pillar[5]quinone molecular.

Fig. S1 Quantitative analysis of P5Q molecular surface.

Fig. S2 Minimal sites of the electrostatic potential on the vdW surface of P5Q.

Fig. S3 Distribution of LUMO orbitals of P5Q.

2. Definition and application of root-mean-square deviation.

3. Interaction region indicator analyses.

Fig. S4 Standard coloring method and chemical explanation of $sign(\lambda_2)\rho$ on IRI

isosurfaces.

Fig. S5 Isosurface map of IRI of P5QNa₂/O4, P5QNa₂/O4, and P5QNa₂/O6.

Fig. S6 Isosurface map of IRI of P5QNa₃/O9.

4. Properties of P5QNa₂⁻ anion.

Fig. S7 Distribution of LUMO orbitals of $P5QNa_2^-$ anion.

Fig. S8 electrostatic potential on the vdW surface of P5QNa₂⁻ anion.

5. LUMO and HOMO orbitals distribution of $P5QNa_n$ (n = 0-10).

Fig. S9 LUMO and HOMO orbitals distribution of $P5QNa_n$ (n = 0-10).

6. The discharge-charge curves of pristine P5Q.

Fig. S10 The discharge-charge curves of pristine P5Q.

7. The DFT calculation results of sodiated products $P5QNa_n$ (n = 0-10).

Table S1 Optimized geometry of P5Q.
Table S2 Optimized geometry of P5QNa₁.
Table S3 Optimized geometry of P5QNa₂.
Table S4 Optimized geometry of P5QNa₃.
Table S5 Optimized geometry of P5QNa₄.
Table S6 Optimized geometry of P5QNa₅.
Table S7 Optimized geometry of P5QNa₆.
Table S8 Optimized geometry of P5QNa₇.
Table S9 Optimized geometry of P5QNa₈.
Table S10 Optimized geometry of P5QNa₉.
Table S11 Optimized geometry of P5QNa₁₀.
8. References

1. Properties of pillar[5]quinone molecular.

Fig. S1 Quantitative analysis of P5Q molecular surface.

Fig. S2 Minimal sites of the electrostatic potential on the vdW surface of P5Q.

Fig. S3 Distribution of LUMO orbitals of P5Q.

2. Definition and application of root-mean-square deviation.

The root-mean-square deviation (RMSD) between the structures of the reactants and products before and after the redox reaction can be calculated by the VMD software to measure the degree of structural deformation of the molecule,^{1, 2} defined as:

RMSD =
$$\sqrt{\frac{1}{N} \sum_{i}^{\text{natom}} \left[(x_i - x_i')^2 + (y_i - y_i')^2 + (z_i - z_i')^2 \right]}$$

Under the assumption that the decay of battery capacity is mainly due to the dissolution of reduction products in the electrolyte, the $P5QNa_n$ (n = 1-10) during the discharge process should not show excessive deformation because P5Q has good cyclability as an electrode material. Therefore, the molecular deformation of the sodiated structures should be as imperceptible as possible to keep the reaction site of P5Q spatially unobstructed, maintain the reactivity, and maximize the conformational advantages of the pillared compounds.

3. Interaction region indicator analyses.

The Interaction region indicator (IRI) functions of isomers P5QNa₂ and P5QNa₃ were calculated via Multiwfn, and the results were imported to VMD to render the chemical bonding and weak interaction regions.³ From the mapped colors of IRI isosurfaces, it is intuitively visualized the interactions between the different atoms in Fig. S4.

$$\operatorname{IRI}(r) = \frac{|\nabla \rho(r)|}{[\rho(r)]^{\mathrm{a}}}$$

where a is an adjustable parameter, a = 1.1 is adopted for the standard definition of IRI. IRI is essentially the gradient norm of electron density-weighted by scaled electron density. As will be shown, isosurfaces of IRI can exhibit various kinds of interaction regions.⁴

As shown in Fig. S5, Na1 (Na2) in P5QNa₂/O6 forms a high interaction with O5 (O6) (ionic bond, bond length 2.25 Å of O5–Na1, chemisorption), which is shown as a light blue color. For comparison, weak interaction between the positively charged Na1 and the negatively charged O3 (Na1…O3 distance of 3.65 Å, physisorption) appeared green color. Na1 in P5QNa₂/O4, which is closer to O3 (2.81 Å) and produces a broader range of weak interactions, even has a weak repulsive effect with the nearest carbon atom. P5QNa₂/O4 showed more prominent chelating effects due to the distortion of the molecular framework, which leads to a reduced potential for the subsequent sodiation products to maintain excellent recyclability. Consequently, the physicochemical properties of the molecules are considered more important than the regularity of the computational software when conducting theoretical studies.

Fig. S4 Standard coloring method and chemical explanation of sign $(\lambda_2)\rho$ on IRI isosurfaces.

Fig. S5 Isosurface map of IRI of P5QNa₂/O3, P5QNa₂/O4, and P5QNa₂/O6.

Fig. S6 Isosurface map of IRI of P5QNa₃/O9.

4. Properties of P5QNa₂⁻ anion.

Fig. S7 Distribution of HOMO orbitals of $P5QNa_2^-$ anion.

Fig. S8 Electrostatic potential of P5QNa₂⁻ anion.

5. LUMO and HOMO orbitals distribution of $P5QNa_n$ (n = 0-10).

As shown in Fig 7, the E_{LUMO} was lowest at the beginning of the sodiation process (-3.66 eV) and gradually increased with the decrease of discharge voltage. When the 10th Na⁺ was intercalated into P5Q molecule, the E_{LUMO} raised dramatically to -0.59 eV, resulting in weaker electron–binding and oxidation ability of P5QNa₁₀ with the discharge voltage no longer decreased. It was also evident from the LUMO orbitals distribution that the molecular framework of P5QNa₁₀ did not provide empty orbitals that could be occupied by free electrons (Fig S9).⁵ The trend of E_{HOMO} was different from that of E_{LUMO} . P5Q and P5QNa₁ are difficult to provide electrons because of the substantial negative E_{HOMO} compared to the subsequent discharge products. However, the E_{HOMO} of P5QNa_n (n = 2-10) remained between -3.91 and -3.25 eV, predicting the stable reducing ability of the sodiated product (Fig. 7).

Fig. S9 LUMO and HOMO orbitals distribution of $P5QNa_n$ (n = 0-10).

6. The discharge-charge curves of pristine P5Q.

Fig. S10 The discharge-charge curves of pristine P5Q.

7. The DFT calculation results of sodiated products P5QNan (n = 0-10).

Table S1 Optimized geometry of P5Q. (Single-point Energy = -2098.118900 Hartree,

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Serial number	Symbol	Х	Y	Ζ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	С	0.557503	-4.120490	1.213271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	С	1.958204	-3.656370	1.239846
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	С	2.660031	-3.442728	-0.063887
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	С	1.993006	-3.646187	-1.213847
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	С	0.589965	-4.103046	-1.240393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	С	-0.101097	-4.349554	0.063261
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Н	0.080192	-4.258202	2.177761
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Н	2.458316	-3.472119	-2.178321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	О	2.532891	-3.450877	2.306755
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	О	0.004695	-4.276147	-2.307295
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	С	-0.127661	4.347481	-0.062647
13C 2.639582 3.459223 0.063453 14C 1.935681 3.667777 -1.240015 15C 0.531926 4.122515 -1.212895 16H 0.053413 4.257202 -2.177217 17O -0.020535 4.274671 2.307870 18O 2.511253 3.465983 -2.307147 19C -4.177838 1.222348 -0.063316 20C -3.733134 1.805304 1.240639 21C -2.871574 3.003207 1.214657 22C -2.475279 3.577658 0.065016 23C -2.892549 2.974879 -1.239017 24C -3.759979 1.781175 -1.213024 25H -2.564065 3.393048 2.179275 26H -4.036243 1.368762 -2.177709 27O -4.076016 1.299902 2.307320 28O -2.522211 3.460495 -2.305698 29C -2.4752618 -3.592752 -0.064370 30C -2.871477 -2.990762 1.239501 31C -3.746502 -1.802612 1.213307 32C -4.169318 -1.247646 0.063540 33C -3.721818 -1.828647 -1.240324 34C -2.853472 -3.021694 -1.214135 35H -4.024369 -1.391040 2.177878 <td>12</td> <td>С</td> <td>0.565503</td> <td>4.105368</td> <td>1.240774</td>	12	С	0.565503	4.105368	1.240774
14C 1.935681 3.667777 -1.240015 15C 0.531926 4.122515 -1.212895 16H 0.053413 4.257202 -2.177217 17O -0.020535 4.274671 2.307870 18O 2.511253 3.465983 -2.307147 19C -4.177838 1.222348 -0.063316 20C -3.733134 1.805304 1.240639 21C -2.871574 3.003207 1.214657 22C -2.475279 3.577658 0.065016 23C -2.892549 2.974879 -1.239017 24C -3.759979 1.781175 -1.213024 25H -2.564065 3.393048 2.179275 26H -4.036243 1.368762 -2.177709 27O -4.076016 1.299902 2.307320 28O -2.522211 3.460495 -2.305698 29C -2.475618 -3.592752 -0.064370 30C -2.871477 -2.990762 1.239501 31C -3.746502 -1.802612 1.213307 32C -4.169318 -1.247646 0.063540 33C -3.721818 -1.828647 -1.240324 34C -2.853472 -3.021694 -1.214135 35H -4.024369 -1.391040 2.177878 36H -2.545204 -3.410900 -2.178764 <	13	С	2.639582	3.459223	0.063453
15C 0.531926 4.122515 -1.212895 16H 0.053413 4.257202 -2.177217 17O -0.020535 4.274671 2.307870 18O 2.511253 3.465983 -2.307147 19C -4.177838 1.222348 -0.063316 20C -3.733134 1.805304 1.240639 21C -2.871574 3.003207 1.214657 22C -2.475279 3.577658 0.065016 23C -2.892549 2.974879 -1.239017 24C -3.759979 1.781175 -1.213024 25H -2.564065 3.393048 2.179275 26H -4.036243 1.368762 -2.177709 27O -4.076016 1.299902 2.307320 28O -2.522211 3.460495 -2.305698 29C -2.475672 -0.064370 30C -2.871477 -2.990762 1.239501 31C -3.746502 -1.802612 1.213307 32C -4.169318 -1.247646 0.063540 33C -3.721818 -1.828647 -1.240324 34C -2.853472 -3.021694 -1.214135 35H -4.024369 -1.391040 2.177878 36H -2.545204 -3.410900 -2.178764 37O -2.497368 -3.473296 2.306261 <td>14</td> <td>С</td> <td>1.935681</td> <td>3.667777</td> <td>-1.240015</td>	14	С	1.935681	3.667777	-1.240015
16H 0.053413 4.257202 -2.177217 17O -0.020535 4.274671 2.307870 18O 2.511253 3.465983 -2.307147 19C -4.177838 1.222348 -0.063316 20C -3.733134 1.805304 1.240639 21C -2.871574 3.003207 1.214657 22C -2.475279 3.577658 0.065016 23C -2.892549 2.974879 -1.239017 24C -3.759979 1.781175 -1.213024 25H -2.564065 3.393048 2.179275 26H -4.036243 1.368762 -2.177709 27O -4.076016 1.299902 2.307320 28O -2.522211 3.460495 -2.305698 29C -2.452618 -3.592752 -0.064370 30C -2.871477 -2.990762 1.239501 31C -3.746502 -1.802612 1.213307 32C -4.169318 -1.247646 0.063540 33C -3.721818 -1.828647 -1.240324 34C -2.853472 -3.021694 -1.214135 35H -4.024369 -1.391040 2.177878 36H -2.545204 -3.410900 -2.178764 37O -2.497368 -3.473296 2.306261	15	С	0.531926	4.122515	-1.212895
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	Н	0.053413	4.257202	-2.177217
18O 2.511253 3.465983 -2.307147 19C -4.177838 1.222348 -0.063316 20C -3.733134 1.805304 1.240639 21C -2.871574 3.003207 1.214657 22C -2.475279 3.577658 0.065016 23C -2.892549 2.974879 -1.239017 24C -3.759979 1.781175 -1.213024 25H -2.564065 3.393048 2.179275 26H -4.036243 1.368762 -2.177709 27O -4.076016 1.299902 2.307320 28O -2.522211 3.460495 -2.305698 29C -2.871477 -2.990762 1.239501 31C -3.746502 -1.802612 1.213307 32C -4.169318 -1.247646 0.063540 33C -3.721818 -1.828647 -1.240324 34C -2.853472 -3.021694 -1.214135 35H -4.024369 -1.391040 2.177878 36H -2.545204 -3.410900 -2.178764 37O -2.497368 -3.473296 2.306261	17	О	-0.020535	4.274671	2.307870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	О	2.511253	3.465983	-2.307147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	С	-4.177838	1.222348	-0.063316
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	С	-3.733134	1.805304	1.240639
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	С	-2.871574	3.003207	1.214657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	С	-2.475279	3.577658	0.065016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	С	-2.892549	2.974879	-1.239017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	С	-3.759979	1.781175	-1.213024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	Н	-2.564065	3.393048	2.179275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	Н	-4.036243	1.368762	-2.177709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	О	-4.076016	1.299902	2.307320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	О	-2.522211	3.460495	-2.305698
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	С	-2.452618	-3.592752	-0.064370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	С	-2.871477	-2.990762	1.239501
32C-4.169318-1.2476460.06354033C-3.721818-1.828647-1.24032434C-2.853472-3.021694-1.21413535H-4.024369-1.3910402.17787836H-2.545204-3.410900-2.17876437O-2.497368-3.4732962.306261	31	С	-3.746502	-1.802612	1.213307
33C-3.721818-1.828647-1.24032434C-2.853472-3.021694-1.21413535H-4.024369-1.3910402.17787836H-2.545204-3.410900-2.17876437O-2.497368-3.4732962.306261	32	С	-4.169318	-1.247646	0.063540
34C-2.853472-3.021694-1.21413535H-4.024369-1.3910402.17787836H-2.545204-3.410900-2.17876437O-2.497368-3.4732962.306261	33	С	-3.721818	-1.828647	-1.240324
35H-4.024369-1.3910402.17787836H-2.545204-3.410900-2.17876437O-2.497368-3.4732962.306261	34	С	-2.853472	-3.021694	-1.214135
36H-2.545204-3.410900-2.17876437O-2.497368-3.4732962.306261	35	Н	-4.024369	-1.391040	2.177878
37 O -2.497368 -3.473296 2.306261	36	Н	-2.545204	-3.410900	-2.178764
	37	О	-2.497368	-3.473296	2.306261

Gibbs Free Energy = -2098.212052 Hartree).

38	Ο	-4.068616	-1.326114	-2.307085
39	С	4.091327	-0.742718	1.213273
40	С	4.083554	0.732813	1.239427
41	С	4.097830	1.465959	-0.064502
42	С	4.085721	0.768433	-1.214295
43	С	4.086389	-0.707105	-1.240439
44	С	4.106245	-1.440175	0.063473
45	Н	4.074012	-1.239019	2.177840
46	Н	4.064592	1.264618	-2.178854
47	О	4.065221	1.343217	2.306141
48	О	4.070888	-1.317569	-2.307168
49	С	-1.570865	4.784247	0.001726
50	Н	-1.719776	5.396266	0.892204
51	Н	-1.813515	5.366609	-0.888028
52	С	-5.038758	-0.015617	-0.000016
53	Н	-5.667531	0.031069	0.890026
54	Н	-5.666817	-0.066668	-0.890294
55	С	-1.541787	-4.794516	-0.000645
56	Н	-1.687528	-5.407888	-0.890732
57	Н	-1.781074	-5.377697	0.889487
58	С	4.084379	-2.947864	0.000017
59	Н	4.622806	-3.276149	-0.889933
60	Н	4.564914	-3.355459	0.890317
61	С	4.067025	2.973495	-0.001045
62	Н	4.544661	3.384017	-0.891559
63	Н	4.603805	3.305069	0.888697
64	С	1.971710	3.658380	1.213684
65	Н	2.438662	3.487679	2.177967

Serial number	Symbol	Х	Y	Z
1	С	4.247098	-0.351285	-1.238824
2	С	3.879274	-1.780075	-1.218797
3	С	3.678090	-2.442478	0.107634
4	С	3.830640	-1.724438	1.234276
5	С	4.213002	-0.299500	1.214310
6	С	4.422449	0.361247	-0.111547
7	Н	4.362485	0.100126	-2.218639
8	Н	3.669517	-2.163489	2.213148
9	Ο	3.741603	-2.409864	-2.265361
10	О	4.353112	0.327632	2.262400
11	С	-4.326109	-0.150706	-0.225288
12	С	-3.886015	-0.776447	-1.505623
13	С	-3.225608	-2.838688	-0.307859
14	С	-3.621045	-2.190550	0.979113
15	С	-4.218751	-0.853776	0.922287
16	Н	-4.531024	-0.423772	1.866885
17	О	-3.987791	-0.180693	-2.578945
18	Ο	-3.435921	-2.765329	2.057292
19	С	-1.420730	4.003138	-0.079640
20	С	-2.005113	3.694424	-1.387588
21	С	-3.143284	2.798549	-1.389643
22	С	-3.635260	2.215445	-0.251548
23	С	-2.987591	2.456101	1.030278
24	С	-1.890740	3.392597	1.049777
25	Н	-3.596895	2.586551	-2.352955
26	Н	-1.430023	3.595829	2.012913
27	О	-1.545081	4.193172	-2.451485
28	О	-3.373795	1.860836	2.092978
29	С	3.501091	2.651405	-0.024409
30	С	2.846033	3.008941	-1.322659
31	С	1.607068	3.799682	-1.280981
32	С	1.037586	4.193382	-0.123738
33	С	1.661147	3.782747	1.172248
34	С	2.921460	3.017782	1.132533
35	Н	1.154702	4.046347	-2.236062
36	Н	3.349113	2.745394	2.091693
37	Ο	3.341421	2.652425	-2.392507
38	Ο	1.139093	4.070022	2.249255
39	С	1.129605	-4.086663	-1.233405

Table S2 Optimized geometry of P5QNa1 (Single-point Energy = -2260.525262)

40	С	-0.340218	-4.157917	-1.340275
41	С	-1.144676	-4.154369	-0.078652
42	С	-0.515763	-4.029802	1.104303
43	С	0.951961	-3.930145	1.209421
44	С	1.759396	-3.995623	-0.048675
45	Н	1.679339	-4.097662	-2.168502
46	Н	-1.069754	-3.990017	2.036546
47	Ο	-0.888435	-4.219008	-2.438696
48	Ο	1.499012	-3.797312	2.302794
49	С	-4.818884	1.269841	-0.277416
50	Н	-5.392664	1.425408	-1.193131
51	Н	-5.459250	1.459315	0.587244
52	С	-0.252754	4.964746	-0.053393
53	Н	-0.325580	5.626018	-0.918219
54	Н	-0.269827	5.552198	0.866237
55	С	4.765706	1.829931	-0.097206
56	Н	5.388893	2.043995	0.772347
57	Н	5.306980	2.085355	-1.008867
58	С	3.258535	-3.891533	0.092346
59	Н	3.565087	-4.367823	1.024491
60	Н	3.736533	-4.393950	-0.749776
61	С	-2.643871	-4.229463	-0.223740
62	Н	-3.066688	-4.740724	0.641991
63	Н	-2.886708	-4.782193	-1.132117
64	С	-3.341803	-2.148386	-1.458037
65	Н	-3.030807	-2.574113	-2.406793
66	Na	-1.968247	0.542134	3.250206

Serial number	Symbol	X	Y	Z	
1	С	3.421077	-2.429794	1.093071	
2	С	4.062870	-1.108499	1.175252	
3	С	4.439876	-0.427046	-0.101344	
4	С	4.167209	-1.023159	-1.276567	
5	С	3.522020	-2.345039	-1.357832	
6	С	3.169633	-3.039430	-0.083001	
7	Н	3.153817	-2.897344	2.035280	
8	Н	4.396603	-0.541731	-2.221260	
9	Ο	4.287387	-0.576711	2.264363	
10	Ο	3.279168	-2.858712	-2.450708	
11	С	-3.138504	2.888511	0.248378	
12	С	-2.350613	2.999851	1.497318	
13	С	-0.590956	4.238077	0.277295	
14	С	-1.327984	4.023421	-0.996008	
15	С	-2.640492	3.400122	-0.909247	
16	Н	-3.211455	3.325230	-1.828474	
17	Ο	-2.752296	2.514572	2.569519	
18	Ο	-0.833865	4.372994	-2.085932	
19	С	-3.605894	-2.105774	-0.181088	
20	С	-3.626451	-1.543024	1.161813	
21	С	-3.953321	-0.150541	1.275245	
22	С	-4.129455	0.663509	0.179084	
23	С	-3.940386	0.132812	-1.163195	
24	С	-3.735233	-1.282970	-1.276971	
25	Н	-4.031897	0.267291	2.274260	
26	Н	-3.654009	-1.699843	-2.276262	
27	Ο	-3.368391	-2.267108	2.190805	
28	Ο	-3.962959	0.901494	-2.192059	
29	С	0.986737	-4.170216	-0.284637	
30	С	0.223015	-4.224001	0.990128	
31	С	-1.225938	-4.113588	0.904321	
32	С	-1.876125	-3.824379	-0.254068	
33	С	-1.102092	-3.653999	-1.505281	
34	С	0.345313	-3.882561	-1.440867	
35	Н	-1.784337	-4.232342	1.826390	
36	Н	0.892458	-3.793126	-2.374170	
37	О	0.810586	-4.362152	2.080590	
38	Ο	-1.652349	-3.351308	-2.578141	
39	С	3.510435	2.453254	1.281352	

Table S3 Optimized geometry of P5QNa₂ (Single-point Energy = -2422.918009

Hartree, Gibbs Free Energy = -2423.035588 Hartree).

40	С	2.430896	3.452726	1.358068
41	С	1.853986	3.970264	0.080884
42	С	2.312305	3.491267	-1.093200
43	С	3.390166	2.493008	-1.170953
44	С	3.984397	1.995555	0.108025
45	Н	3.895511	2.088471	2.227634
46	Н	1.896796	3.829395	-2.037037
47	Ο	2.016988	3.846677	2.449251
48	Ο	3.796141	2.078149	-2.258337
49	С	-4.439638	2.136856	0.316292
50	Н	-4.928857	2.327502	1.273887
51	Н	-5.091628	2.456047	-0.500106
52	С	-3.360713	-3.591338	-0.319697
53	Н	-3.852111	-4.125411	0.496853
54	Н	-3.749465	-3.945413	-1.276805
55	С	2.482362	-4.374182	-0.199202
56	Н	2.836090	-4.882338	-1.097786
57	Н	2.708113	-4.978494	0.680296
58	С	5.061765	0.943795	0.005325
59	Н	5.667191	1.136191	-0.881615
60	Н	5.692323	0.983671	0.894712
61	С	0.730967	4.966978	0.192415
62	Н	0.724783	5.609615	-0.688799
63	Н	0.875938	5.570853	1.089738
64	С	-1.081906	3.732028	1.432409
65	Н	-0.535662	3.839777	2.364283
66	Na	-1.485138	-1.810628	3.330830
67	Na	-2.031177	1.185527	-3.301459

Hartree, Gibbs Free Energy = -2585.448788 Hartree). Y Ζ Serial number Symbol Х 4.205845 0.275606 -1.3507901 С 2 С 4.092857 -1.168315-1.379839С 3 4.006718 -1.838151-0.0831224 С 3.969899 -1.1060131.073798 5 С 4.034028 0.330527 1.090272 6 С 4.194202 1.004749 -0.1900047 Η 4.289105 0.779798 -2.3095428 Η 3.869590 -1.6093382.031491 9 Ο 4.076819 -1.815818-2.46567710 0 3.941319 0.988584 2.188077 С 11 -4.237713 -0.971497-0.16880812 С -1.408973-1.445261-3.63408613 С -2.669869-3.382454-0.30329314 С 0.996365 -3.187275-2.88490815 С -4.027292 -1.7006510.963483 16 Η -4.477798-1.3903021.900739 17 0 -3.785028-0.762570-2.50086318 Ο -2.907450-3.4694932.065945 19 С -2.1255713.569250 0.121726 20 С -2.5488713.112198 -1.19291221 С -3.5398842.081401 -1.22707822 С -3.993956 -0.0911001.443262 С 23 -3.4430501.785639 1.208469 24 С -2.5432102.903873 1.252871 25 Η -3.9117641.772584 -2.1990513.211497 26 Η -2.1707252.226126 27 0 -2.0444253.614730 -2.26744728 Ο -3.7625081.127280 2.267363 29 С 2.919900 3.130026 -0.066790С 30 2.160897 3.425332 -1.31501731 С 0.840435 4.036999 -1.17324132 С 0.236741 4.218131 0.029140 33 С 0.954244 3.823907 1.266206 34 С 2.337512 3.364729 1.130803 35 Η 0.326018 4.316826 -2.08606436 Η 2.876574 3.145833 2.045399 37 0 2.645460 3.180049 -2.43241138 Ο 0.407973 3.879919 2.381966 39 С 1.789479 -3.870640-1.360078

Table S4 Optimized geometry of $P5QNa_3$ (Single-point Energy = -2585.321146

40	С	0.357107	-4.173198	-1.444683
41	С	-0.401445	-4.351589	-0.168879
42	С	0.230393	-4.169338	1.009003
43	С	1.658576	-3.831726	1.092421
44	С	2.431001	-3.718092	-0.181677
45	Н	2.319362	-3.744816	-2.298286
46	Н	-0.304902	-4.259384	1.949057
47	Ο	-0.208983	-4.284297	-2.537317
48	Ο	2.203639	-3.654349	2.186793
49	С	-5.004343	0.321630	-0.167911
50	Н	-5.589832	0.411244	-1.086025
51	Н	-5.672159	0.353763	0.696471
52	С	-1.167270	4.738676	0.177881
53	Н	-1.389100	5.428323	-0.639771
54	Н	-1.265078	5.257044	1.133768
55	С	4.291562	2.516670	-0.193491
56	Н	4.906962	2.841013	0.649704
57	Н	4.751335	2.851077	-1.125172
58	С	3.886244	-3.345627	-0.082827
59	Н	4.305096	-3.757396	0.837263
60	Н	4.420889	-3.746109	-0.945844
61	С	-1.870242	-4.664914	-0.281854
62	Н	-2.182592	-5.261286	0.576619
63	Н	-2.044734	-5.222547	-1.203513
64	С	-2.873982	-2.660481	-1.432020
65	Н	-2.463484	-2.990274	-2.381734
66	Na	-0.895694	2.089138	-3.463006
67	Na	-2.295218	-0.212867	3.265214
68	Na	1.999569	0.865905	3.331098

Serial number	Symbol	Х	Y	Z
1	С	3.352849	1.993058	1.247090
2	С	2.456754	3.106973	1.103145
3	С	2.258403	3.609110	-0.246158
4	С	2.798910	2.934797	-1.321714
5	С	3.615666	1.770703	-1.183251
6	С	3.951466	1.365092	0.176896
7	Н	3.560437	1.649173	2.257230
8	Н	2.593648	3.282856	-2.329249
9	Ο	1.883975	3.650381	2.119281
10	О	4.040197	1.116312	-2.209055
11	С	-4.108943	-1.608173	0.353355
12	С	-3.732463	-0.788287	1.520645
13	С	-4.078598	1.259143	0.166858
14	С	-4.305999	0.422709	-1.032852
15	С	-4.431453	-1.001742	-0.826395
16	Н	-4.702099	-1.607607	-1.684301
17	Ο	-3.406204	-1.301519	2.612378
18	Ο	-4.354855	0.930158	-2.183697
19	С	0.186372	-4.133287	-0.170144
20	С	-0.317770	-3.986361	1.190856
21	С	-1.705944	-3.681215	1.329914
22	С	-2.535773	-3.430649	0.255622
23	С	-1.992005	-3.402230	-1.092094
24	С	-0.619838	-3.805621	-1.237450
25	Н	-2.107527	-3.638153	2.337587
26	Н	-0.222513	-3.858415	-2.248092
27	Ο	0.448894	-4.133756	2.216796
28	Ο	-2.706620	-3.064761	-2.106729
29	С	4.175738	-1.079562	0.168075
30	С	3.570390	-1.756053	1.329832
31	С	2.929151	-3.037545	1.078701
32	С	2.550964	-3.441824	-0.164963
33	С	2.983219	-2.645502	-1.329010
34	С	3.949985	-1.589004	-1.074718
35	Н	2.611052	-3.617724	1.936547
36	Н	4.390492	-1.094063	-1.931467
37	Ο	3.583636	-1.260231	2.483999
38	Ο	2.533741	-2.841911	-2.485765
39	С	-0.728792	4.445385	0.830588

Table S5 Optimized geometry of $P5QNa_4$ (Single-point Energy = -2747.710433

40	С	-2.019947	3.820520	1.020606
41	С	-2.694412	3.285791	-0.185261
42	С	-2.017932	3.223147	-1.360716
43	С	-0.646282	3.709859	-1.513801
44	С	-0.034232	4.366290	-0.340812
45	Н	-0.278802	4.928454	1.691351
46	Н	-2.486030	2.784116	-2.237391
47	Ο	-2.539488	3.711245	2.158769
48	Ο	-0.039671	3.600770	-2.599848
49	С	-3.996564	-3.101981	0.462439
50	Н	-4.319128	-3.444190	1.448379
51	Н	-4.610085	-3.578212	-0.307409
52	С	1.613233	-4.603803	-0.368801
53	Н	1.842612	-5.386038	0.360972
54	Н	1.732225	-5.006264	-1.376762
55	С	4.918639	0.215283	0.371244
56	Н	5.727116	0.289260	-0.362105
57	Н	5.340031	0.251564	1.377907
58	С	1.390707	4.830175	-0.447849
59	Н	1.580963	5.263429	-1.432446
60	Н	1.596118	5.576013	0.324792
61	С	-4.097668	2.757020	-0.017417
62	Н	-4.685645	2.994995	-0.905846
63	Н	-4.548350	3.227062	0.858707
64	С	-3.789187	0.664626	1.353538
65	Н	-3.565887	1.270204	2.227542
66	Na	1.010933	-2.179164	3.300280
67	Na	-2.547300	-1.099129	-3.197552
68	Na	2.465403	-0.134553	-3.332857
69	Na	0.153751	2.716388	3.200041

Ζ Serial number Symbol Х Y С -4.421016 -1.3654171.185419 1 2 С -3.432969-2.3936741.372936 3 С -2.947512-3.0558190.154725 4 С -3.326239-2.563930-1.0574875 С -4.013502-1.296914-1.2233686 С -4.635021 -0.744892-0.0271997 Η -4.893178 -0.959519 2.071726 8 Η -2.969179-3.069851 -1.9470909 0 -2.980976-2.6846742.528317 10 Ο -4.016302-0.720279-2.35528711 С 4.537552 0.909902 0.174802 12 С 4.497947 -0.0225781.309214 С 13 4.177461 -1.899227-0.27263214 С 4.071939 -0.958329-1.376183С 15 0.413461 -1.0915024.446185 16 Η -1.9214934.459560 1.110618 17 0 4.426503 0.379004 2.515333 18 Ο 3.617660 -1.263812-2.52622719 С 3.933297 0.409275 0.402171 С 20 3.602067 1.678307 1.042330 С 21 2.402529 3.116674 1.596186 22 С 3.065121 2.891538 0.413108 С 23 2.363440 3.090133 -0.84906624 С 1.055758 3.681941 -0.76928925 Η 2.910389 2.924324 2.537809 Η 26 0.569791 -1.7063403.938824 27 0 0.453070 3.755590 2.792034 28 Ο 2.864630 2.760152 -1.98711129 С -4.196755 1.592497 0.020346 30 С -3.5964371.816218 1.327139 С 31 -2.5447072.797561 1.397462 С -2.06229932 3.460251 0.298231 33 С -2.5573623.117317 -1.032051С 34 -3.6588522.211814 -1.09577735 Η -2.1210943.009032 2.376035 36 Η -4.0748031.997480 -2.07557237 Ο -3.9817011.186576 2.375855 38 0 -2.0147353.618696 -2.09052239 С 0.294120 -3.5829491.146697

Table S6 Optimized geometry of P5QNa5 (Single-point Energy = -2910.103673)

Hartree, Gibbs Free Energy = -2910.248868 Hartree).

40	С	1.710436	-3.337128	1.035873
41	С	2.271080	-3.379522	-0.306177
42	С	1.420953	-3.416811	-1.396650
43	С	0.001359	-3.543102	-1.285492
44	С	-0.529755	-3.757900	0.062422
45	Н	-0.111874	-3.671302	2.151763
46	Н	1.837808	-3.378103	-2.398543
47	О	2.432326	-3.143685	2.077626
48	О	-0.764596	-3.515922	-2.320554
49	С	4.502200	2.398775	0.413433
50	Н	4.962155	2.634895	1.375357
51	Н	5.060404	2.906069	-0.379738
52	С	-0.989763	4.518514	0.428957
53	Н	-1.126738	5.047474	1.375177
54	Н	-1.095612	5.223841	-0.399394
55	С	-5.322910	0.592760	-0.101228
56	Н	-5.844963	0.723575	-1.052019
57	Н	-6.034655	0.700238	0.722454
58	С	-1.969418	-4.200351	0.247139
59	Н	-2.208831	-4.932273	-0.531663
60	Н	-2.066839	-4.682771	1.222053
61	С	3.771800	-3.333169	-0.478705
62	Н	4.040353	-3.680389	-1.479353
63	Н	4.259906	-3.969689	0.265816
64	С	4.486375	-1.424456	0.982427
65	Н	4.575363	-2.128859	1.801029
66	Na	-0.748382	2.207835	-3.267335
67	Na	-2.733718	-0.420340	3.455471
68	Na	-1.579001	-1.528411	-3.169846
69	Na	2.645378	-1.177749	3.262539
70	Na	2.205502	0.743384	-2.992780

Serial number	Symbol	Х	Y	Z
1	С	-0.588165	3.588823	-1.263360
2	С	0.835070	3.534012	-1.185456
3	С	1.395539	3.651921	0.142489
4	С	0.559441	3.594504	1.250443
5	С	-0.863684	3.532988	1.172686
6	С	-1.424726	3.645079	-0.155433
7	Н	-1.028112	3.623537	-2.258272
8	Н	0.999282	3.633626	2.245263
9	Ο	1.575458	3.434794	-2.256242
10	О	-1.603207	3.432907	2.243834
11	С	1.284406	-3.616086	-0.078970
12	С	1.824507	-3.276306	-1.384517
13	С	3.762747	-2.228325	-0.247078
14	С	3.148224	-2.430062	1.048613
15	С	1.930790	-3.190265	1.060330
16	Н	1.514983	-3.451742	2.030269
17	О	1.186603	-3.579158	-2.475624
18	Ο	3.654012	-1.966985	2.144625
19	С	-3.741726	-2.249078	0.253689
20	С	-3.131899	-2.453605	-1.043444
21	С	-1.910796	-3.207434	-1.056274
22	С	-1.256224	-3.622914	0.082743
23	С	-1.792076	-3.279112	1.388581
24	С	-3.061094	-2.633419	1.403711
25	Н	-1.499520	-3.473167	-2.027208
26	Н	-3.509667	-2.431763	2.372476
27	Ο	-3.644882	-1.997998	-2.139800
28	Ο	-1.147894	-3.572493	2.479029
29	С	-3.659521	2.549792	-0.167908
30	С	-3.954369	1.710416	-1.332752
31	С	-4.673185	0.488251	-1.078654
32	С	-4.755551	-0.079853	0.172116
33	С	-4.326530	0.698457	1.330131
34	С	-3.960610	2.075882	1.078830
35	Н	-4.993168	-0.091560	-1.936275
36	Н	-3.740007	2.705550	1.933117
37	О	-3.562169	2.009118	-2.510299
38	О	-4.217901	0.210590	2.500686
39	С	3.941103	2.091952	-1.084661

Table S7 Optimized geometry of $P5QNa_6$ (Single-point Energy = -3072.480335

Hartree, Gibbs Free Energy = -3072.633692 Hartree).

40	С	4.319569	0.716690	-1.330044
41	С	4.757658	-0.051894	-0.169047
42	С	4.671393	0.521297	1.079293
43	С	3.941583	1.737738	1.328636
44	С	3.638102	2.569264	0.160069
45	Н	3.713954	2.715981	-1.941414
46	Н	4.999178	-0.050278	1.939526
47	Ο	4.213666	0.222656	-2.498144
48	Ο	3.547291	2.038530	2.504868
49	С	0.016253	-4.438376	0.001197
50	Н	-0.030891	-5.071969	-0.888848
51	Н	0.067023	-5.072931	0.890437
52	С	-5.077127	-1.540839	0.336332
53	Н	-5.741109	-1.873380	-0.467463
54	Н	-5.549594	-1.737849	1.301646
55	С	-2.919255	3.851710	-0.331139
56	Н	-3.274857	4.560765	0.424865
57	Н	-3.112122	4.269761	-1.322124
58	С	2.888918	3.866785	0.318108
59	Н	3.078874	4.289492	1.307681
60	Н	3.240718	4.575296	-0.440197
61	С	5.092946	-1.510418	-0.327380
62	Н	5.756791	-1.834518	0.479932
63	Н	5.570421	-1.706774	-1.290350
64	С	3.089669	-2.622866	-1.397905
65	Н	3.541022	-2.423453	-2.365753
66	Na	-2.737801	-0.164409	-3.196924
67	Na	-0.066811	-1.902345	3.419418
68	Na	-2.022893	1.385161	3.136620
69	Na	2.008616	1.384359	-3.137141
70	Na	0.073687	-1.925582	-3.405241
71	Na	2.743448	-0.138872	3.203754

Serial number	Symbol	Х	Y	Ζ
1	С	0.111677	3.672285	1.212919
2	С	-1.316650	3.478490	1.181492
3	С	-1.977273	3.633089	-0.112412
4	С	-1.203971	3.828593	-1.23187
5	С	0.229636	3.952921	-1.204420
6	С	0.868821	3.937929	0.100433
7	Н	0.591351	3.615824	2.187155
8	Н	-1.681167	3.917506	-2.204992
9	Ο	-1.957032	3.208475	2.256479
10	Ο	0.909118	4.084739	-2.286110
11	С	-0.845127	-3.856204	0.119285
12	С	-1.263825	-3.404744	1.414950
13	С	-3.399170	-2.646946	0.361395
14	С	-2.926405	-2.957918	-0.955133
15	С	-1.686672	-3.656109	-0.986710
16	Н	-1.403021	-4.104387	-1.942868
17	Ο	-0.520721	-3.522570	2.503084
18	Ο	-3.567060	-2.629191	-2.06367
19	С	3.961887	-1.925764	0.154080
20	С	3.188178	-2.188414	1.323514
21	С	2.188728	-3.183129	1.148765
22	С	1.694315	-3.615497	-0.080730
23	С	2.320017	-3.145089	-1.27574
24	С	3.537806	-2.456197	-1.072710
25	Н	1.687325	-3.586966	2.021996
26	Н	4.168307	-2.256731	-1.93657
27	Ο	3.322204	-1.582259	2.500353
28	Ο	1.815363	-3.293763	-2.50674
29	С	3.166959	2.910636	0.136354
30	С	3.694145	2.346322	1.365443
31	С	4.501693	1.167693	1.225918
32	С	4.597938	0.433764	0.069211
33	С	4.015506	0.965528	-1.154542
34	С	3.353734	2.238746	-1.048588
35	Н	4.985233	0.782530	2.121415
36	Н	2.943753	2.666496	-1.958480
37	Ο	3.403915	2.804544	2.530885
38	Ο	4.075219	0.345731	-2.27741
39	С	-4.271599	1.707291	1.221223

Table S8 Optimized geometry of $P5QNa_7$ (Single-point Energy = -3234.876351

40	С	-4.443822	0.310339	1.516745
41	С	-4.707178	-0.556037	0.383647
42	С	-4.701954	-0.012190	-0.879314
43	С	-4.212552	1.307832	-1.177574
44	С	-4.041224	2.194805	-0.042391
45	Н	-4.152094	2.382191	2.061834
46	Н	-4.916794	-0.679418	-1.708124
47	О	-4.287903	-0.120226	2.718984
48	О	-3.887293	1.624883	-2.381063
49	С	0.493115	-4.549011	-0.083346
50	Н	0.636116	-5.282942	0.720731
51	Н	0.466318	-5.096691	-1.031988
52	С	5.142318	-0.971860	0.134454
53	Н	5.752261	-1.077827	1.037828
54	Н	5.771401	-1.190982	-0.734571
55	С	2.358212	4.186700	0.197222
56	Н	2.653867	4.840355	-0.628170
57	Н	2.574248	4.689530	1.142421
58	С	-3.491461	3.591670	-0.221184
59	Н	-3.779578	3.982670	-1.200085
60	Н	-3.920075	4.243460	0.548473
61	С	-4.784882	-2.051280	0.555854
62	Н	-5.470298	-2.469934	-0.189033
63	Н	-5.155566	-2.296413	1.554868
64	С	-2.573001	-2.856919	1.469657
65	Н	-2.950670	-2.569469	2.449636
66	Na	2.984423	0.499053	3.311944
67	Na	-0.191815	-2.302366	-2.598779
68	Na	0.883469	2.534443	-3.891033
69	Na	-2.309023	1.157580	3.258088
70	Na	0.851102	-1.854598	3.068054
71	Na	-2.957130	-0.590889	-2.925854
72	Na	2.673981	-1.157736	-3.210145

Serial number	Symbol	Х	Y	Z
1	С	-0.989859	3.995993	0.562412
2	С	-2.335027	3.507043	0.550041
3	С	-2.842310	3.116435	-0.744861
4	С	-1.977502	3.064515	-1.831622
5	С	-0.598371	3.422847	-1.785152
6	С	-0.122345	3.957288	-0.523157
7	Н	-0.658078	4.473415	1.485958
8	Н	-2.370184	2.743035	-2.793924
9	О	-3.039700	3.438154	1.641704
10	О	0.161614	3.318015	-2.839138
11	С	-0.021341	-3.954712	0.532188
12	С	-0.500426	-3.410595	1.788113
13	С	-2.755591	-3.161482	0.755449
14	С	-2.248563	-3.560514	-0.535979
15	С	-0.896974	-4.031069	-0.546371
16	Н	-0.567350	-4.529388	-1.460292
17	О	0.261206	-3.276821	2.838615
18	О	-2.958253	-3.512924	-1.627299
19	С	4.264046	-1.171754	0.198941
20	С	3.613950	-1.487145	1.431458
21	С	2.855522	-2.683885	1.401393
22	С	2.433646	-3.341730	0.241600
23	С	2.946486	-2.911815	-1.014580
24	С	3.979322	-1.947230	-0.927519
25	Н	2.473048	-3.086076	2.333255
26	Н	4.560841	-1.722881	-1.819239
27	О	3.649635	-0.750416	2.543488
28	О	2.497820	-3.317837	-2.209124
29	С	2.342290	3.390715	-0.249866
30	С	2.869474	2.962637	1.000552
31	С	3.926666	2.026152	0.900795
32	С	4.224616	1.265829	-0.231601
33	С	3.555024	1.570006	-1.456678
34	С	2.770309	2.748749	-1.416456
35	Н	4.519408	1.810374	1.785888
36	Н	2.373975	3.146481	-2.344493
37	Ο	2.419190	3.349778	2.200806
38	О	3.596822	0.837996	-2.570660
39	С	-4.606068	1.019903	0.884372

Table S9 Optimized geometry of $P5QNa_8$ (Single-point Energy = -3397.240956

Hartree, Gibbs Free Energy = -3397.405393 Hartree).

40	С	-4.388244	-0.296599	1.422793
41	С	-4.441701	-1.395608	0.467056
42	С	-4.559598	-1.103041	-0.871765
43	С	-4.383314	0.220358	-1.409153
44	С	-4.483996	1.316598	-0.454032
45	Н	-4.700117	1.846939	1.579296
46	Н	-4.618945	-1.934077	-1.565736
47	Ο	-4.120777	-0.456833	2.666730
48	Ο	-4.111877	0.387269	-2.651059
49	С	1.406336	-4.454154	0.383331
50	Н	1.663538	-5.051908	1.267076
51	Н	1.456410	-5.111033	-0.491459
52	С	5.121204	0.059890	-0.023508
53	Н	5.772083	0.247552	0.838752
54	Н	5.762662	-0.108270	-0.896661
55	С	1.294596	4.484456	-0.376727
56	Н	1.535107	5.095188	-1.256163
57	Н	1.335833	5.133392	0.504288
58	С	-4.305063	2.744879	-0.901598
59	Н	-4.601875	2.856484	-1.947547
60	Н	-4.923402	3.405086	-0.283706
61	С	-4.225017	-2.817884	0.917172
62	Н	-4.831924	-3.493773	0.304860
63	Н	-4.514531	-2.931608	1.964890
64	С	-1.885975	-3.079284	1.836904
65	Н	-2.280184	-2.753922	2.797497
66	Na	3.112647	1.291056	3.302059
67	Na	0.374884	-2.682506	-2.510745
68	Na	1.317995	1.397554	-3.165883
69	Na	-2.756821	1.544713	2.948907
70	Na	1.406802	-1.357185	3.164155
71	Na	-2.707105	-1.610932	-2.931496
72	Na	3.054853	-1.217881	-3.258242
73	Na	0.337746	2.584199	2.469546

Serial number	Symbol	X	Y	Z
1	6	-0.933893	-4.252018	-0.544859
2	6	-2.209778	-3.652682	-0.716099
3	6	-2.843032	-3.273690	0.500756
4	6	-2.096588	-3.292333	1.684991
5	6	-0.704379	-3.538905	1.766493
6	6	-0.147722	-4.161443	0.607268
7	1	-0.502396	-4.779195	-1.395664
8	1	-2.621974	-3.017954	2.596479
9	8	-2.705700	-3.465670	-1.937177
10	8	-0.025928	-3.179488	2.859654
11	6	0.209070	4.167842	-0.630823
12	6	-0.344150	3.624883	-1.835357
13	6	-2.529788	3.429645	-0.639848
14	6	-1.996786	3.992397	0.558715
15	6	-0.628346	4.367611	0.485056
16	1	-0.228324	4.920052	1.340581
17	8	0.338354	3.475278	-2.960569
18	8	-2.719305	4.159001	1.656329
19	6	4.239817	1.007094	-0.516533
20	6	3.532269	1.380930	-1.695549
21	6	2.892958	2.641912	-1.617373
22	6	2.619269	3.342374	-0.437843
23	6	3.178680	2.865300	0.780377
24	6	4.103103	1.803917	0.627627
25	1	2.463687	3.075684	-2.513052
26	1	4.722270	1.530326	1.481290
27	8	3.418652	0.644375	-2.810247
28	8	2.864967	3.314854	2.005803
29	6	2.290183	-3.593467	0.227636
30	6	2.570891	-3.110994	-1.082403
31	6	3.638258	-2.179904	-1.135426
32	6	4.135485	-1.453317	-0.048763
33	6	3.679551	-1.785346	1.260255
34	6	2.919826	-2.981458	1.317398
35	1	4.074751	-1.939929	-2.102557
36	1	2.742030	-3.433128	2.292730
37	8	1.910408	-3.444565	-2.197476
38	8	3.882945	-1.067983	2.370912
39	6	-4.715540	-0.798554	-0.927842

Table S10 Optimized geometry of P5QNa₉ (Single-point Energy = -3559.625174

Hartree, Gibbs Free Energy = -3559.802530 Hartree).

40	6	-4.567410	0.570516	-1.359055
41	6	-4.144134	1.523214	-0.341554
42	6	-3.826840	1.059899	0.913409
43	6	-3.857330	-0.321365	1.302304
44	6	-4.317574	-1.273424	0.299494
45	1	-5.127868	-1.499762	-1.653486
46	1	-3.499919	1.781516	1.655353
47	8	-4.739997	0.886358	-2.585232
48	8	-3.497229	-0.680587	2.483768
49	6	1.683460	4.540949	-0.532041
50	1	1.964446	5.121654	-1.421634
51	1	1.828694	5.187077	0.341501
52	6	5.038246	-0.275204	-0.367153
53	1	5.585483	-0.496311	-1.291918
54	1	5.778065	-0.136229	0.430298
55	6	1.276466	-4.680562	0.528869
56	1	1.551114	-5.151923	1.480769
57	1	1.315011	-5.456673	-0.244996
58	6	-4.271367	-2.761593	0.560108
59	1	-4.685394	-2.982046	1.550467
60	1	-4.888557	-3.268833	-0.188441
61	6	-3.979871	2.986394	-0.686232
62	1	-4.544428	3.587010	0.034988
63	1	-4.395061	3.151434	-1.683872
64	6	-1.718492	3.271876	-1.765294
65	1	-2.166588	2.864126	-2.672507
66	11	2.377336	-1.320157	-3.230091
67	11	0.698470	3.077040	2.415957
68	11	1.702752	-1.774220	3.192197
69	11	-3.131101	-1.528806	-2.945853
70	11	1.276823	1.543964	-3.467682
71	11	-2.409881	3.201444	3.556212
72	11	3.130192	1.024922	2.863947
73	11	-0.271434	-2.969863	-2.639237
74	11	-1.394014	-1.193637	3.130305

Tuble STI optimized geometry of 15 Q1 all (Single point Energy 5721.) 90150	Table	S11	Optimized	geometry	of P5QNa ₁₀	(Single-point	Energy = -3721.998156
---	-------	-----	-----------	----------	------------------------	---------------	-----------------------

Serial number	Symbol	Х	Y	Ζ
1	С	-1.853262	-3.790459	-1.134602
2	С	-2.865564	-2.810909	-1.296824
3	С	-3.547599	-2.483079	-0.087824
4	С	-3.029173	-2.956884	1.122427
5	С	-1.777653	-3.601865	1.285549
6	С	-1.243938	-4.136737	0.076243
7	Н	-1.456810	-4.276359	-2.025202
8	Н	-3.623451	-2.747757	2.010761
9	Ο	-3.085407	-2.271139	-2.501318
10	Ο	-1.196744	-3.642529	2.489150
11	С	1.401404	4.082763	-0.084937
12	С	0.658032	3.951151	-1.294159
13	С	-1.434103	4.072254	0.076839
14	С	-0.689362	3.946976	1.286724
15	С	0.702542	4.157702	1.123976
16	Н	1.305092	4.332234	2.013579
17	Ο	1.154520	3.645306	-2.498604
18	Ο	-1.181807	3.641911	2.491677
19	С	4.335297	-0.070878	-0.076296
20	С	3.987950	0.600764	-1.285399
21	С	3.741871	1.986367	-1.119241
22	С	3.443665	2.621040	0.090776
23	С	3.557417	1.873284	1.299208
24	С	4.188749	0.614522	1.134513
25	Н	3.715371	2.615503	-2.006907
26	Н	4.538480	0.091685	2.023165
27	Ο	3.865526	0.040910	-2.494036
28	Ο	3.109199	2.244791	2.504057
29	С	1.269883	-4.128223	-0.086672
30	С	1.802048	-3.584921	-1.292700
31	С	3.049070	-2.932121	-1.123417
32	С	3.561801	-2.460328	0.090094
33	С	2.881108	-2.799944	1.296171
34	С	1.874993	-3.784365	1.126917
35	Н	3.644639	-2.713863	-2.008545
36	Н	1.480246	-4.278567	2.013227
37	Ο	1.225618	-3.626752	-2.498367
38	Ο	3.097143	-2.263474	2.502610
39	С	-4.200733	0.585286	-1.127734

Hartree, Gibbs Free Energy = -3722.177739 Hartree)

40	С	-3.577686	1.846851	-1.296844
41	С	-3.465015	2.597828	-0.090255
42	С	-3.751754	1.962479	1.122830
43	С	-3.986245	0.574587	1.290655
44	С	-4.337029	-0.099036	0.084569
45	Н	-4.548264	0.056068	-2.012835
46	Н	-3.720196	2.593046	2.010007
47	Ο	-3.131721	2.218727	-2.502976
48	Ο	-3.850283	0.014097	2.498290
49	С	2.916149	4.041851	0.002990
50	Н	3.358859	4.521797	-0.878119
51	Н	3.229096	4.616436	0.883212
52	С	4.755809	-1.526643	0.007202
53	Н	5.345898	-1.800468	-0.875690
54	Н	5.399081	-1.653037	0.886503
55	С	0.015739	-4.979499	-0.008074
56	Н	0.094373	-5.630985	0.870782
57	Н	-0.058734	-5.625522	-0.891156
58	С	-4.747590	-1.557879	0.001827
59	Н	-5.333073	-1.835546	0.886490
60	Н	-5.393316	-1.687967	-0.875113
61	С	-2.948025	4.022205	-0.007954
62	Н	-3.392020	4.501604	0.872988
63	Н	-3.266167	4.592789	-0.888898
64	С	-0.736233	4.150228	-1.133202
65	Н	-1.340224	4.315250	-2.024806
66	Na	2.697229	-0.107884	3.105213
67	Na	0.944009	2.531504	3.122676
68	Na	-2.120693	1.654516	3.098334
69	Na	0.724389	-2.584404	3.094378
70	Na	-2.263470	-1.497527	3.101510
71	Na	2.289046	-1.476855	-3.109338
72	Na	2.120030	1.686169	-3.105589
73	Na	-0.706978	-2.566534	-3.087389
74	Na	-0.949182	2.484593	-3.090691
75	Na	-2.710983	-0.115152	-3.106156

8. References

- 1. S. Grimme, Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations, *J. Chem. Theory Comput.*, 2019, **15**, 2847-2862.
- 2. W. Humphrey, A. Dalke and K. Schulten, VMD: Visual Molecular Dynamics, *J. Mol. Graph.*, 1996, **14**, 33-38.
- 3. T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 2012, 33, 580-592.
- 4. T. Lu and Q. Chen, Interaction Region Indicator: A Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions, *Chem. Methods*, 2021, 1, 231-239.
- 5. L. Miao, L. Liu, Z. Shang, Y. Li, Y. Lu, F. Cheng and J. Chen, The Structureelectrochemical Property Relationship of Quinone Electrodes for Lithium-ion Batteries, *Phys. Chem. Chem. Phys.*, 2018, **20**, 13478-13484.