Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information (SI)

Novel pyridine-based covalent organic framework containing N, N, N-chelating sites for selective detection and effective removal of nickel

Yongqiang Li^{ab}, Quan Wang^a, Yuhua Ju^c, Yarong Li^d, Yanbo zhang ^{a*}, Ronggui Hu^b

^a School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei

Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Research Center

of Eco-dyeing & Finishing and Functional Textile, Wuhan 430200, P.R. China

^b College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, P.R. China

^c Library of Wuhan Textile University, Wuhan 430200, P.R. China

^d College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China

* Corresponding author. E-mail address: hgxy_wtu@163.com

Fig. S1. Local details of the FT-IR spectra of TAPA, PCBA and TAPA-PCBA.

Fig. S2. AA stacking mode of TAPA-PCBA and the calculated PXRD pattern.

Fig. S3. AB stacking mode of TAPA-PCBA and the calculated PXRD pattern.

Space group		P-6 (No. 174)	
Unit cell		a = b = 30.2577 Å, c = 4.2507 Å, $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Pawley refinement		Rwp = 4.84%, Rp = 3.91%	
Atom	x/a	y/b	z/c
C1	0.04518	0.61041	0.5
C2	0.04572	0.65706	0.5
C3	0.0925	0.60812	0.5
C4	0.71744	0.37827	0.5
C5	0.72754	0.42365	0.5
C6	0.77594	0.46729	0.5
C7	0.81559	0.46656	0.5
C8	0.80606	0.42156	0.5
С9	0.75762	0.37803	0.5
N10	0.86396	0.51284	0.5
C11	0.6104	0.04518	0.5
C12	0.65706	0.04572	0.5
C13	0.6081	0.09249	0.5
C14	0.37827	0.71744	0.5
C15	0.42365	0.72754	0.5
C16	0.46729	0.77593	0.5
C17	0.46657	0.81558	0.5
C18	0.42156	0.80605	0.5
C19	0.37804	0.75761	0.5
N20	0.51285	0.86395	0.5
C21	1	0.65737	0.5

Table S1. Unit cell parameters and fractional atomic coordinates of TAPA-PCBA with

 eclipsed arrangement.

N22	1	0.56609	0.5
H23	0.08123	0.69272	0.5
H24	0.08965	0.57119	0.5
H25	0.69773	0.42572	0.5
H26	0.78286	0.50194	0.5
H27	0.83528	0.42024	0.5
H28	0.75147	0.34421	0.5
H29	0.69271	0.08123	0.5
H30	0.57117	0.08963	0.5
H31	0.42572	0.69773	0.5
H32	0.50195	0.78286	0.5
H33	0.42024	0.83527	0.5
H34	0.34421	0.75147	0.5
H35	0.99999	0.69316	0.5
N36	0.66667	0.33333	0.5
N37	0.33333	0.66667	0.5

Fig. S4. SEM images of TAPA-PCBA.

Fig. S5. PXRD patterns of TAPA-PCBA upon 12 h treatment in different solvents.

Fig. S6. Fluorescence excitation (black) and emission (red) spectra of TAPA-PCBA

in water suspension.

Fig. S7. Fluorescence spectra of TAPA-PCBA in the presence of various metal ions.

Fig. S8. Low-resolution XPS spectra of TAPA-PCBA before (black) and after (blue)

Ni²⁺ adsorption.

Fig. S9. Comparison of PXRD pattern of TAPA-PCBA before and after Ni^{2+}

adsorption.