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Experimental section

Materials: All chemical reagents were purchased from commercial suppliers and 

were used as received without further purification. Carbon cloth was bought from was 

provided by Hongshan District, Wuhan Instrument Surgical Instruments business. 

Water used throughout all experiments was purified by a Millipore ultrapure water 

system.

Preparation of NiFe2O4/CC: In a typical process, 0.475 g NiCl2∙6H2O, 1.08 g 

FeCl3∙6H2O, 0.37 g NH4F, and 0.60 g urea were dissolved in 40 mL deionized water. 

Then the solution was poured into a 50 mL Teflon-lined autoclave with a piece of 

carbon cloth (2 cm × 3 cm). The autoclave was sealed and heated at 140 °C for 10 h. 

To prepare NiFe2O4/CC, the resulting precursor was taken out and annealed at 400 °C 

under Ar atmosphere for 2 h. The mass loading of NiFe2O4 nanosheets on CC is 1.8 

mg/cm2.

Preparation of Fe3O4/CC: Fe3O4 precursor on CC was synthesized by a similar 

procedure as mentioned above, but without adding NiCl2∙6H2O. Then the precursor 

was annealed at 400 °C under H2/Ar atmosphere for 2 h to get Fe3O4/CC. The mass 

loading of Fe3O4 nanorods on CC is 1.7 mg/cm2.

Characterizations: SEM measurements were carried out on a Gemini Sigma 300/VP 

microscope. TEM images were collected on a HITACHI H-8100 electron microscopy. 

XRD data were acquired by a LabX XRD-6100 X-ray diffraction instrument. XPS 
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spectra were recorded on an ESCALABMK II X-ray photoelectron spectrometer. UV-

Vis absorbance spectra were obtained on a SHIMADZU UV-2700 spectrophotometer. 

Gas chromatography analysis was performed on a Shimadzu GC-2014C with Ar as 

carrier gas. 1H NMR spectra were collected on Varian VNMRS 600 MHz (the USA) 

with water suppression.

Electrochemical measurements: All electrochemical measurements were performed 

in an H-shaped electrochemical cell with a CHI 760E electrochemical workstation 

(Shanghai, Chenhua). The electrolyte was Ar-saturated of 0.1 M PBS with 0.1 M 

NaNO3, using NiFe2O4/CC as the working electrode, a graphite plate as the counter 

electrode, and a saturated Ag/AgCl as the reference electrode. All potentials reported 

in this work were converted to RHE scale and current density was normalized to 

geometric area of electrode (0.25 cm2).

Determination of NH3: The amount of NH3 in the electrolyte was quantitatively 

determined by colorimetry using the indophenol blue method. Concretely, 2.0 mL of 

sample solution was added to a 7 mL of centrifuge tube, to which 2.0 mL of 

chromogenic reagent (0.1 M sodium hydroxide + 5.0 wt% salicylic acid + 5.0 wt% 

sodium citrate), 1.0 mL of oxidizing reagent (0.05 M NaClO), and 0.2 mL of 

catalysing reagent (1.0 wt% sodium nitroferricyanide) were successively added. After 

2 h of dark incubation, the absorbance at 655 nm was collected using UV-vis 

spectrophotometer. The concentration-absorption spectra were calibrated using 

standard NH4Cl solution with different concentration (Fig. S1).
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Determination of NO2
–: The amount of NO2

– in the electrolyte was quantitatively 

determined by Griess method. In detail, 1.0 mL of sample solution, 1.0 mL of 

deionized water, and 2.0 mL of Griess reagent (0.2 wt% N-(1-naphthyl)ethyldiamine 

dihydrochloride + 2.0 wt% sulfonamide + 5.5 wt% H3PO4) were successively added 

to a 7 mL of centrifuge tube. After 15 min of dark incubation, the absorbance at 540 

nm was collected using UV-vis spectrophotometer. The concentration-absorption 

spectra were calibrated using standard NaNO2 solution with different concentration 

(Fig. S2).

Determination of N2H4: The amount of N2H4 in the electrolyte was quantitatively 

determined by Watt and Chrisp method. Firstly, 1.0 mL of sample solution was mixed 

with 1.0 mL of chromogenic reagent (5.99 g p-dimethylaminobenzaldehyde + 30 mL 

concentrated HCl + 300 mL ethanol). Then, after incubating in the dark for 15 min, 

the absorbance at 455 nm was collected using UV-vis spectrophotometer. The 

concentration-absorption spectra were calibrated using standard N2H4 solution with 

different concentration (Fig. S3).

NO3
– isotopic labelling experiment: The generated 15NH4

+ and 14NH4
+ were verified 

by isotope-labelled tracer experiments using 0.1 M Na15NO3 and Na14NO3 as nitrogen 

sources, respectively. After 1 h of chronoamperometry test at –1.0 V vs. RHE, the pH 

of the post-electrolysis electrolyte was adjusted to 2 with 0.5 M HCl. Then, the 

electrolyte (500 μL) was mixed with D2O (50 μL) for further 1H NMR detection.

Determination of NH3 yield and FE:
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Where n is the number of electrons transferred during eNO3RR, C is the concentration 

of products, V is the volume of cathodic electrolyte, F is the Faraday constant, M is 

the molar mass of products, Q is the total quantity of applied electricity, t is the 

electrolysis time, and A is the geometric area of working electrode.

Computational details: First-principles calculations with spin-polarized were 

performed based on density functional theory implemented in the VASP package,1 

and the interaction between valence electrons and ionic core were expanded using the 

projector augmented wave (PAW)2 approach with a cutoff of 450 eV. Perdew-Burke-

Ernzerhof functional (PBE) with semi-empirical corrections of DFT-D3 was adopted 

to describe exchange-correlation functional effect3 based on general gradient 

approximation (GGA). NiFe2O4 (100) surface with two terminations were modeled, 

the thickness of the vacuum region is >15 Å to avoid the spurious interaction. 

Hubbard U model was implemented with an effective U = 4.5 eV and 4 eV for Fe 3d 

and Ni 3d orbitals, respectively.4,5 The Brillouin zone was sampled by 3 × 3 × 1 

special k-points using the Monkhorst Pack scheme for structural configuration 

optimizations.6 The force convergence thresholds are 0.02 eV/Å and the total energy 

less than 1E-5 eV, respectively. The theoretical calculation results were processing 

and analyzed by VASPKIT software.7
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Fig. S1. Plotting of standard curve of NH4
+ in 0.1 M PBS solution.
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Fig. S2. Plotting of standard curve of NO2
– in 0.1 M PBS solution.
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Fig. S3. Plotting of standard curve of N2H4 in 0.1 M PBS solution.
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Fig. S4. XRD patterns of (a) CC and (b) Fe3O4/CC. SEM images of (c) CC and (d) 

Fe3O4/CC. LSV curves of (e) CC and (f) Fe3O4/CC in Ar-saturated 0.1 M PBS 

with/without additional 0.1 M NaNO3.
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Fig. S5. (a) UV-Vis spectra of generated NH3 for Fe3O4/CC at each given potential. (b) 

Corresponding NH3 yields and FEs.
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Fig. S6. UV-Vis spectra of generated N2H4 for NiFe2O4/CC at each given potential.
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Fig. S7. NH3 yields and FEs of NiFe2O4/CC for recycling tests at −0.6 V in 0.1 M 

PBS with additional 0.1 M NaNO3.
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Fig. S8. (a) Chronoamperometry curves and corresponding UV-Vis spectra of 

NiFe2O4/CC for generated NH3 during recycling tests at −0.6 V in 0.1 M PBS with 

additional 0.1 M NaNO3.
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Fig. S9. XRD pattern for NiFe2O4/CC after electrolysis test.
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Fig. S10. SEM images for NiFe2O4/CC after electrolysis test.
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Fig. S11. XPS spectra in (a) Ni 2p, (b) Fe 2p, and (c) O 1s regions for NiFe2O4/CC 

after electrolysis test. The peak at 534.9 eV in O 1s region can be assigned to the Na 

KLL Auger line which is derived from the electrolyte adsorbed on the surface of 

NiFe2O4.
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Fig. S12. The atomic structure of NiFe2O4 with inverse spinel structure.
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Fig. S13. PDOS of NiFe2O4 bulk.
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Fig. S14. NiFe2O4 (100) surface with two terminations.
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Fig. S15. The NO3
– adsorption configurations on NiFe2O4 (100) surface.
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Fig. S16. PDOS of NiFe2O4 (100).
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Fig. S17. PDOS of NO3
– adsorbed on NiFe2O4 (100).
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Fig. S18. Atomic configurations of H adsorbed on different site of NiFe2O4 (100).
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Table S1. Comparison of the FE and NH3 yield for NiFe2O4/CC with other reported 

non-noble-metal eNO3RR catalysts.

Catalyst Electrolyte
FE (%) 

@ E (V vs RHE)

NH3 yield 
(mg/h/cm2) 

@ E (V vs RHE)
Ref.

NiFe2O4/CC
0.1 M PBS 

(0.1 M NaNO3)
96.6 @ 0.60 10.6 @ 1.0 This work

Fe SAC
0.1 M K2SO4 
(0.5 M KNO3)

75.0 @ 0.66 8.0 @ 0.85 8

Fe-PPy SACs
0.1 M KOH 

(0.1 M KNO3)
100 @ −0.50 2.75 @ −0.70 9

O-Cu-PTCDA
0.1 M PBS

(4.95 mM KNO3)
85.9 @ −0.4 0.90 @ −0.6 10

Cu3P NA/CF
0.1 M PBS 

(0.1 M NaNO3)
62.9 @ −0.60 0.848 @ −0.9 11

Cu/Cu2O NWAs
0.5 M Na2SO4

(2.36 mM NaNO3)
95.8 @ −0.85 4.1633 @ −0.85 12

pCuO-5
0.05 M H2SO4

(0.05 M NaNO3)
89.0 @ −0.5 4.964 @ −0.6 13

In-S-G
0.1 M KOH 

(0.1 M KNO3)
75.0 @ −0.5 1.272 @ −0.5 14

oxo-MoSx
0.1 M PBS 

(0.1 M NaNO3)
96.0  @ 0 ⸺ 15

TiO2‑x
0.5 M Na2SO4

(0.59 mM NaNO3)
85.0 @ −0.95 0.765 @ −0.95 16

Ni3N/N-C-800
0.5 M Na2SO4

(0.05 M NaNO3)
85.0 @ −0.795 4.72 @ −0.795 17

BCN@Ni
0.1 M KOH 

(0.1 M KNO3)
90.0 @ −0.3 2.25 @ −0.5 18

Ni3B@NiB2.74
0.1 M KOH 

(0.1 M KNO3)
100.0 @ −0.3 0.012 @ −0.3 19

Co3O4@NiO
0.5 M Na2SO4 

(2.36 mM NaNO3)
55.0 @ −0.7 ⸺ 20
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