Supplementary Information

Synergistic effect of S vacancy and P dopants in MoS₂/Mo₂C to promote

electrocatalytic hydrogen evolution

Yaru Zhao ^a, Wang Xin ^{a, b}, Bitao Liu ^{a, b}, Hongxing Li ^a, Yuqing Xu ^{a, b}, Zixuan Zhang ^a

^a College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China

^b Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160,

China

Correspondence author. E-mail: liubitao007@163.com (B.T. Liu)

Contents

Figure S11
Figure S21
Figure S32
Figure S4
Figure S54
Figure S64
Figure S75
Figure S8
Figure S9
Figure S107
Figure S117
Figure S12
Figure S13
Figure S149
Figure S15
Figure S1610
Table S111
Reference

Figure S1. SEM image of Mo-MoF.

Figure S2. SEM image of Mo₂C.

Figure S3. SEM image of different phosphating temperature (a,b) 600°C; (c,d) 700 °C; (e,f) 900 °C.

Figure S4. SEM image of different phosphorus content at 800 °C (a,b) 0.05g; (c,d) 0.2g; (e,f) 0.3g.

Figure S5. XRD patterns of different phosphating temperature (900°C, 800°C, 700°C, 600°C).

Figure S6. EDS spectra of P-MoS₂/Mo₂C.

Figure S7. EDS elemental mappings of MoS_2/Mo_2C .

Figure S8. (a, b) TEM images and (c) HR-TEM image of P₉₀₀-MoS₂/Mo₂C (d) corresponding EDS elemental mappings of P₉₀₀-MoS₂/Mo₂C; (e) EDX spectra of P₉₀₀-MoS₂/Mo₂C.

Figure S9. C 1s XPS of P-MoS₂/Mo₂C, MoS₂/Mo₂C and Mo₂C.

Figure S10. XPS of Mo 3d in different phosphating temperature (700°C, 800°C, 900°C).

Figure S11. XPS of P 2p in different phosphating temperature (700°C, 800°C, 900°C)

Figure S12. XPS of S 2p in different phosphating temperature (700°C, 800°C, 900°C)

Figure S13. HER polarization curves tested at different phosphating temperature (900°C, 800°C, 700°C, and 600 °C) in 1 M KOH.

Figure S14. HER polarization curves tested of different phosphorus content (0.05, 0.1, 0.2, and 0.3 g) at 800°C.

Figure S15. HER polarization curves tested of Mo₂C and Mo MOF.

Figure S16. Typical cyclic voltammograms at different scan rates from 20 to 100 mV s⁻¹. (a) P-MoS₂/Mo₂C; (b) H₂-MoS₂/Mo₂C; (c) MoS₂/Mo₂C-p; (d) N₂-MoS₂/Mo₂C and (e) MoS₂/Mo₂C. The scanning potential range is from 1.023 V to 1.223V vs SCE.

		Tafel slope	
Catalyst	η ₁₀ (mV)	(mV dec ⁻¹)	Reference
P-MoS ₂ /Mo ₂ C	66	67	This work
H-MoS ₂ /MoP	92	59	Small, 2020, 16, 2002482 ¹
N-MoP/CC	70	_	Appl. Catal. B: Environ., (2019) 118441 ²
MoS2/Mo2C	63	48	ACS Catal.,(2017),7,7312-73183
MoS ₂ /CoNi ₂ S ₄	78	67.4	Adv. Funct. Mater.,(2019) 1908520 ⁴
MoS ₂ /NiCoS	189	75	J. Mater. Chem. A, 2019, 7, 27594-27602 ⁵
NiS/MoS ₂	174	70.2	J. Mater. Chem. A, 2019,7,21514-21522 ⁶
MoS_2	153	73	ACS Energy Lett. 2019, 4, 2830-2835 7
CuS@MoS ₂	135	50	J. Colloid Interface Sci., 2020, 564, 77-87 ⁸
N-doped MoS ₂	114	46.8	J. Am. Chem. Soc. 2019, 141, 18578-1858 ⁹
CoP/CN@MoS2	149	88	ACS Appl. Mater. Interfaces 2019,11, 366 ¹⁰

Table S1. Summary of various MoS₂-based catalysts for HER in 1 M KOH.

References

- Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu, Y. Lin, M. Liu, Y. Li and G. Li, Hierarchical nanorods of MoS₂/MoP heterojunction for efficient electrocatalytic hydrogen evolution reaction, *Small*, 2020, 16, 2002482.
- 2. C. G. López-Calixto, M. Liras, V. A. de la Peña O'Shea and R. Pérez-Ruiz, Synchronized biphotonic process triggering CC coupling catalytic reactions, Applied Catalysis B: Environmental, 2018, **237**, 18-23.
- Z. Zhao, F. Qin, S. Kasiraju, L. Xie, M.Alam, Vertically Aligned MoS₂/Mo₂C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution, ACS Catal., 2017, 7, 7312-7318.
- 4. J. Hu, C. Zhang, P. Yang, J. Xiao, T. Deng, Z. Liu, B. Huang, M. K. H. Leung and S. Yang, Kinetic-Oriented Construction of MoS 2 Synergistic Interface to Boost pH-Universal Hydrogen Evolution, Adv. Funct. Mater., 2019, **30**, 1908520.
- 5. C. Qin, A. Fan, X. Zhang, S. Wang, X. Yuan and X. Dai, Interface engineering: few-layer MoS₂ coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting, Journal of Materials Chemistry A, 2019, 7, 27594-27602.
- 6. A. Long, W. Li, M. Zhou, W. Gao, B. Liu, J. Wei, X. Zhang, H. Liu, Y. Liu and X. Zeng, MoS₂ nanosheets grown on nickel chalcogenides: controllable synthesis and electrocatalytic origins for the hydrogen evolution reaction in alkaline solution, Journal of Materials Chemistry A, 2019, 7, 21514-21522.
- 7. H. A. Ariyanta, T. A. Ivandini and Y. Yulizar, A novel way of the synthesis of three-dimensional (3D) MoS₂ cauliflowers using allicin, Chem. Phys. Lett., 2021, **767**, 138345.
- L. Liu, X. Liu and S. Jiao, CuS@defect-rich MoS₂ core-shell structure for enhanced hydrogen evolution, J. Colloid Interface Sci., 2020, 564, 77-87.
- H. Wang, X. Xiao, S. Liu, C.-L. Chiang, X. Kuai, C.-K. Peng, Y.-C. Lin, X. Meng, J. Zhao, J. Choi, Y.-G. Lin, J.-M. Lee and L. Gao, Structural and Electronic Optimization of MoS₂ Edges for Hydrogen Evolution, J. Am. Chem. Soc., 2019, 141, 18578-18584.
- J.-G. Li, K. Xie, H. Sun, Z. Li, X. Ao, Z. Chen, K. K. Ostrikov, C. Wang and W. Zhang, Template-Directed Bifunctional Dodecahedral CoP/CN@MoS₂ Electrocatalyst for High Efficient Water Splitting, ACS Appl. Mater. Interfaces, 2019, 11, 36649-36657.