Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supporting Information

Supporting Information

Layer-structure-suppressed concentration quenching of Dy³⁺ luminescence and the realization of a single phase white light-emitting phosphor cooperated with Tm³⁺

Feiyan Xie,^{ab} Junhao Li,^{c*} Dekang Xu,^{b*} Hualan Xu,^a Shuifu Liu,^d Yinuan Li,^b Yuhong Wen,^b PeilanZhang^b and Shengliang Zhong^{a*}

^aResearch Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China

^bSchool of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, P. R. China

^cGuangdong Province Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, P. R. China

^dSchool of Marine Sciences, Sun Yat-Sen University Zhuhai 519082, P. R. China

*Corresponding authors

Email:

junhaoli0317@qq.com; xudek@hzu.edu.cn; slzhong@jxnu.edu.cn

Fig. S1 The Rietveld XRD refinement of LBGW and LBGW:12%Dy³⁺ phosphor powder X-ray patterns.

Fig.S2 The PL spectra of LBGW: yTm^{3+} . The inset shows the relationship between Tm^{3+} doping concentration and luminescence intensity.

It can be seen in Fig.S2 that with the increase of Tm³⁺ doping concentration, the luminescence intensity of LBGW:Tm³⁺ increases continuously. When the concentration of Tm³⁺ reaches 9%, the luminescence intensity reaches the maximum value, and then the luminescence intensity begins to decrease. Similar to the doping of Dy³⁺, Tm³⁺ has a relatively high doping concentration in this matrix.

Fig.S3 PLE spectra of LBGW:12%Dy³⁺, LBGW:12%Dy³⁺,3%Tm³⁺and LBGW:3%Tm³⁺, LBGW:12% Dy³⁺,3%Tm³⁺ were monitored at 574 nm and 454 nm emission wavelengths, respectively.

Fig.S4 (a) PL spectra and (b) Chromaticity diagram of the LBGW:12%Dy³⁺,3%Tm³⁺ phosphor at different excitation wavelengths.

Fig.S5 The graph of $ln[(I/I_0) - 1]$ verses 1/KT for LBGW:12%Dy³⁺,3%Tm³⁺.

Atom	x	у	Ζ	B _{iso}	Occ.
W1	0.4060	0.4894(3)	0.4414(1)	0.5488(6)	1
W2	0.3499(2)	0.4997(7)	0.7428(3)	0.5638(4)	1
Ba3	0.2500	1.0000	0.5200(6)	0.5480(3)	1
Y4	0.4684(8)	1.0066(2)	0.6476(9)	0.5267(2)	0.75
Li4	0.4689(6)	1.0052(9)	0.6474(4)	0.3307(3)	0.25
Li5	0.2500	0.5000	0.2520(8)	0.5478(9)	1
O1	0.3234(5)	0.6211	0.4344(2)	0.5483(4)	1
O2	0.4018(6)	0.2645(3)	0.5504(3)	0.5477(6)	1
03	0.4669(6)	0.7951(9)	0.4967(3)	0.5487(4)	1
O4	0.4515(5)	0.2338(1)	0.3494(9)	0.5496(5)	1
05	0.2887	0.2512(6)	0.6894(4)	0.5492(6)	1
O6	0.3861(6)	0.7920(8)	0.6444(4)	0.5494	1
07	0.3221(3)	0.6167(9)	0.8807(1)	0.5468(4)	1
08	0.5288(7)	0.4879(9)	0.8503(9)	0.5434(7)	1

Table S1. Fractional atomic coordinates and isotropic displacement parameters (Å²) of LBGW.

Atom	x	У	Ζ	$B_{\rm iso}$	Occ.
W1	0.4063(9)	0.4903(5)	0.4415(4)	0.7098	1
W2	0.3504(1)	0.5001(2)	0.7435(9)	0.7098	1
Ba3	0.2500	1.0000	0.5301(8)	0.7098	1
Y4	0.4682(4)	1.0067(3)	0.6458(4)	0.7098	0.75
Li4	0.4682(4)	1.0067(3)	0.6458(4)	0.7098	0.25
Li5	0.2500	0.5000	0.2497	0.7098	1
01	0.3245(1)	0.6466(2)	0.4337(2)	0.7098	1
O2	0.4021(7)	0.2524(1)	0.5435	0.7098	1
O3	0.4666(8)	0.8001(7)	0.4987(8)	0.7098	1
O4	0.4546(9)	0.2342(5)	0.3511(7)	0.7098	1
05	0.3171(1)	0.2304(7)	0.6905	0.7098	1
06	0.3752(1)	0.7708(3)	0.6408(3)	0.7098	1
O7	0.3242(9)	0.6207	0.8868(2)	0.7098	1
08	0.5272(6)	0.4911(4)	0.8441	0.7098	1

Table S2. Fractional atomic coordinates and isotropic displacement parameters (Å²) of LBGW:12% Dy³⁺.

Atom	x	У	Z	$B_{ m iso}$	Occ.
W1	0.4878(4)	0.4407(3)	0.4057(6)	0.8110(2)	1
W2	0.5015(9)	0.7427(2)	0.3499	0.7536(9)	1
Ba3	1.0000	0.5314(9)	0.2500	0.7250(7)	1
Y4	1.0024(2)	0.6458(8)	0.4677(5)	0.2673(8)	0.75
Li4	1.0024(2)	0.6458(8)	0.4677(5)	0.2673(8)	0.25
Li5	0.5000	0.2794(8)	0.2500	0.7179(6)	1
01	0.6469(6)	0.4203(3)	0.3272(1)	0.8103(7)	1
O2	0.2650(1)	0.5466(3)	0.3981(6)	0.7041(1)	1
03	0.7662(3)	0.4876(2)	0.4561(6)	1.0445	1
O4	0.3158(8)	0.3283(1)	0.4444(8)	0.7508(7)	1
05	0.2862(7)	0.7068(9)	0.2819	1.0667(9)	1
06	0.7834(1)	0.6596(4)	0.3625(8)	0.6443(7)	1
O7	0.6363(8)	0.8708(4)	0.3267(2)	0.5523(2)	1
08	0.3258(5)	0.7534(8)	0.4316(15)	0.4434	1

Table S3. Fractional atomic coordinates and isotropic displacement parameters (Å²) of LBGW:12% Dy^{3+} ,3% Tm³⁺.