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Computational Methods

Spin-polarized calculations are performed using the Vienna Ab initio Simulation 

Package (VASP) and the project augmented wave potential. The functional of Perdew-

Burke-Ernzerhof is used to calculate the exchange energy. The plane wave cutoff 

energy is set at 400 eV, the convergence criterion for the total energy is set at 10-5 eV, 

and the force acting on each atom is set at 0.02 eV/Å. Brillouin zone sampling is 

performed using the Gamma-center scheme with a k mesh of 3×3×3. HSE06 

functionals are used to calculate the band of the LiGa5O8.
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Fig. S1. XRD patterns of the LiGa5O8:Tb3+ phosphors.

Fig. S2. SEM image of the LiGa5O8:Eu3+ phosphors. The insets show the bar charts of 

the size distribution.



Fig. S3. Elemental distribution maps of the LiGa5O8:0.003Eu3+ phosphors and the 

LiGa5O8:0.003Tb3+ phosphors.

Fig. S4. High-resolution XPS spectra of Eu 3d.



Fig. S5. The emission intensity in the period from 0 s to 6 s.

Fig. S6. PL spectra of LiGa5O8:xEu3+ phosphors and LiGa5O8:xTb3+ phosphors (x = 

0.001-0.005).

Fig. S7. Fluorescence decay curves of LiGa5O8:0.003Eu3+ phosphors and 

LiGa5O8:0.003Tb3+ phosphors at 254 nm excitation.



Fig. S8. DR spectra of LiGa5O8:xEu3+ (x = 0, 0.001, 0.002, 0.003, 0.004, 0.005) 

phosphors.

Fig. S9. TL curves analyzed by the initial rising method for trap depth

evaluation.



Fig. S10. (a) Thermogravimetric analysis (TGA) data of LiGa5O8:0.003Eu3+ under 

inert atmosphere. (b) Water resistance tests of the LiGa5O8:Eu3+ after being placed in 

tap water for different time. (c)Water resistance tests of the LiGa5O8: Tb3+ after being 

placed in tap water for different time.

Fig. S11. Energy diagram proposed a plausible afterglow mechanism



Table S1. The refined crystallographic data of LiGa5O8.

Formula LiGa5O8

Crystal system Cubic

Space group P4332 (212)

Lattice parameters

a(Å) 8.2130

b(Å) 8.2130

c(Å) 8.2130

α°=β°=γ° 90

Cell volume(Å3 ) 553.78

T/K 297

Diffractometer Rigaku D/Max-2400

Radiation/Å Cu-Ka (λ= 1.5405)

Absorption correction multi-scan

2θ range°/ 10-70

Z 8

Calculated Density 5.3227 g/cm3

Rwp 9.83%

Rp 7.10%



Table S2. Trap parameters and properties based on thermoluminescence peak fitting of 

LiGa5O8:0.003Eu3+ phosphors.

Samples Fitting E (eV) b s (s-1) n0 (cm-3)

TL1 0.45 1.13 6.492×104 7.713×106

LiGa5O8:0.003Eu3+
TL2

TL3

TL4

0.69

0.72

0.74

1.99

1.31

1.35

1.044×107

2.902×106

3.483×105

6.775×106

3.272×106

2.848×106


