High-Efficient Electrochemical Synthesis of low-Nuclearity Copper-clusters-based metalorganic framework for size-selective oxidation of alcohols
Zixuan Huang, Lin Zhang, Jiayou Hou, Tengjiao Xu, Bowen Song, Xi Bai, Hai Fu* and Peipei Guo*

Institute of Chemistry and Life science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China.

Table of Contents

1. Experimental section (page 2-3)
2. Crystal data of $\mathbf{H - 1}$ and $\mathbf{H - 2}$
(page 4)
3. Optimization conditions of the electrochemical synthesis $\mathbf{H - 1 e}$
(page 4)
4. Optimization conditions of the aerobic oxidation reaction by $\mathbf{H - 1 e}$ (page 5)
5. Comparison of benzyl alcohol oxidation on different MOF-based cataly
(page 5)
6. Solvent accessible areas calculation by PLATON
7. SEM of $\mathbf{H - 1 e}$ grown on Cu foil (page 6)
8. UV-visible spectra of methylene blue solution in methanol before and after adsorption
9. FESEM-EDX of $\mathbf{H - 1 e}$
(page 6)
(page 7)
10. Fourier-Transform Infrared Spectra (FT-IR) of $\mathrm{H}_{4} \mathrm{~L}$ and $\mathbf{H - 1}$
(page 7)
11. TGA of $\mathbf{H - 1}, \mathbf{H}-1 \mathbf{e}$ and $\mathbf{H - 2}$, FT-IR of $\mathbf{H}-1 \mathbf{e}$ after 4 recycles
(page 7)
12. Raman spectra obtained from bare quartz container pristine (page 8)
13. Size selective effect of $\mathbf{H - 1 e}$ (page 9)
14. N_{2} gas sorption isotherms for $\mathbf{H}-1 \mathbf{e}$
(page 9)
15. Methanol oxygen in the anion of phenylcarbinol coordinated and oxidized with the catalyst $\mathbf{H - 1}$.
(page 10)
16. Electronic cloud distribution and MO
(page 10)
17. Energy barriers of different alcohols on the catalyst $\mathbf{H - 1 e}$
(page 11)
18. The SEM, TEM image and the EDS mapping of $\mathbf{H - 1 e}$
(page 12)
19. Two channels 1 and 2 in the asymmetric unit cell of $\mathbf{H - 1 e}$
(page 12)
20. Cartesian coordinates used for DFT Study
(page 13 - page 16)
21. References
22. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

1 Experimental section

Synthesis of ligand $H_{4} L$

Ethyl 4-hydroxybenzoate ($5.7 \mathrm{~g}, 35 \mathrm{mmol}$), Pentaerythrityl Tetrabromide (2.5 g , $6.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{~g}, 0.18 \mathrm{~mol})$ were poured into a round-bottom flask with 100 mL DMF, and refluxed at $120{ }^{\circ} \mathrm{C}$ for three days. The crudes were purified by silica column with the eluent ethyl acetate/petroleum ether (1:5). After the purification, the products were dissolved in 20 ml THF, then 10 ml MeOH and $8 \mathrm{ml} \mathrm{NaOH}(4 \mathrm{M})$ were added. The yellowish solids were obtained by refluxing overnight under magnetic stirring at $50{ }^{\circ} \mathrm{C} .{ }^{1}$ Dilute hydrochloric acid was added dropwise until the solids dissolved, washed with deionized water for 3 times, then dried in vacuum to obtain the pure organic ligand namely $\mathrm{H}_{4} \mathrm{~L}$ (4,4'-((2,2-bis((4-carboxyphenoxy) methyl) propane-1,3-diyl) bis(oxy)) dibenzoic acid). The pure product of ligand $\mathrm{H}_{4} \mathrm{~L}$ was obtained as offwhite solid in a yield of 76% based on Pentaerythrityl Tetrabromide.

Synthesis of ligand TPOM

4-hydroxypyridine ($3.4 \mathrm{~g}, 36 \mathrm{mmol}$), Pentaerythrityl Tetrabromide ($2.5 \mathrm{~g}, 6.5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{~g}, 0.18 \mathrm{~mol})$ were poured into a round-bottom flask with 100 mL DMF, and refluxed under magnetic agitation condition for 3 days at $120^{\circ} \mathrm{C}$. After cooling down to room temperature, the mixture was poured into ice water (3000 ml), producing white precipitates. ${ }^{2}$ The crudes were dried in vacuum after extraction and filtration, and purified using silica column with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 5)$ as the eluent. The pure organic ligand TPOM (tetrakis (4-pyridyloxy-methylene) methane) dipyridine was obtained as off-white solid in a yield of 82% based on Pentaerythrityl Tetrabromide.
Synthesis of the compound $\mathbf{H - 1}\left(\mathrm{C}_{66} \mathrm{H}_{56} \mathrm{Cu}_{4} \mathrm{O}_{28}, \mathbf{1 2 (O) , 4 [D M F]) \text { and } \mathbf { H - 2 }}\right.$
$\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cu}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$.
For H-1, A mixture of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(150 \mathrm{mg}, 0.62 \mathrm{mmol}), \mathrm{H}_{4} \mathrm{~L}(50 \mathrm{mg}, 0.08 \mathrm{mmol})$, $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}=3 / 7\left(\mathrm{H}_{2} \mathrm{O}=3.0 \mathrm{ml}, \mathrm{DMF}=7.0 \mathrm{ml}\right)$ was vigorously stirred for 30 min at room temperature. After stirring, the final pH value was adjusted to 6 with 1 M HCl aq , then sealed in a glass autoclave reactor $(15 \mathrm{~mL})$, kept under $110^{\circ} \mathrm{C}$ for 36 h . After cooling to room temperature at the rate of $10^{\circ} \mathrm{C} / \mathrm{h}$, blue transparent block-shaped crystal samples of H-1 were obtained, washed with ethanol for three times, and dried at room temperature. Transparent crystal samples of $\mathbf{H - 1}$ were collected in 72% yields based on Cu . Anal. Calcd for $\mathrm{C}_{66} \mathrm{H}_{56} \mathrm{Cu}_{4} \mathrm{O}_{28}, 12(\mathrm{O}), 4[\mathrm{DMF}]: \mathrm{C} 45.41$, H 3.21\%; found: C 43.52, H 3.95\%.
For H-2, A mixture of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.135 \mathrm{mmol})$, TPOM ($60 \mathrm{mg}, 0.135$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}=4 / 6\left(\mathrm{H}_{2} \mathrm{O}=3.0 \mathrm{ml}, \mathrm{DMF}=7.0 \mathrm{ml}\right)$ was vigorously stirred for 30 min at room temperature. The final pH value was adjusted to 6 with 1 M HCl , then sealed in a glass autoclave reactor $(15 \mathrm{~mL})$, kept under $105^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature at the rate of $10^{\circ} \mathrm{C} / \mathrm{h}$, blue transparent block-shaped crystal samples of \mathbf{H} 2 were received, washed with DMF for three times, and dried at room temperature. Transparent crystals of $\mathbf{H - 2}$ were collected in 75% yields based on Cu . Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cu}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}$: C 35.62, H 2.85, N 6.65\%; found: C 36.23, H 2. 31, N 6.88\%.

Synthesis of H-1e

The whole electrosynthesis process was carried out in a typical single cell (50 mL) with a two-electrode system comprising Cu foam sheets $\left(1 \times 1 \mathrm{~cm}^{2}\right)$ both as anode bathing
and cathode in a solution containing DMF/ $\mathrm{H}_{2} \mathrm{O}(7: 3 \mathrm{v} / \mathrm{v} ; 40 \mathrm{~mL})$, EmimBF $_{4}(1.0 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(1 \mathrm{ml})$ as supporting electrolyte. A small amount of organic ligand $\mathrm{H}_{4} \mathrm{~L}$ (nearly $80 \mathrm{mg}, 0.12 \mathrm{mmol}$) was then dissolved in the above electrolyte solution under the condition of stirring, forming a homogeneous solution for 10 min under 6.0 V at 50 ${ }^{\circ} \mathrm{C}$. Subsequently, blue precipitate was rapidly formed, collected by filtration, then washed with $\mathrm{H}_{2} \mathrm{O}$ and DMF three times, dried in a vacuum. The material electrochemically synthesised is named $\mathbf{H}-1 \mathbf{e}$ throughout this paper. The pure product $\mathbf{H}-1 \mathbf{e}$ (blue crystal samples) was yield of 96% based on ligand $\mathrm{H}_{4} \mathrm{~L}$. Since hydrochloric acid (HCl) was added in solvothermal synthesis to regulate acidity, to keep the same crystal structure, a small amount of hydrochloric acid was also used in electrochemical synthesis to regulate acidity. Meanwhile, HCl added in electrochemical synthesis could also form ions in the electrolyte and increase the conductivity of the solution a little.

2. Crystal data compounds of $\mathbf{H - 1}$ and $\mathbf{H - 2}$

Table S1.

Crystal data and structure refinements ${ }^{3}$

Compounds	H-1	H-2
formula	$\begin{gathered} \hline \mathrm{C}_{66} \mathrm{H}_{56} \mathrm{Cu}_{4} \mathrm{O}_{28}, 12(\mathrm{O}), \\ 4[\mathrm{DMF}] \\ \hline \end{gathered}$	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}$
formula weight	2035.72	840.486
T/K	293(2)	293(2)
wavelength (\AA)	0.71073	0.71073
crystal system	'orthorhombic'	'tetragonal'
space group	Pnna	I-4
$a(\AA)$	27.857(3)	12.1241(9)
$b(\AA)$	17.9648(17)	12.1241(9)
$c(\AA)$	10.3908(10)	10.3617(14)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	90
$\gamma /{ }^{\circ}$	90	90
$V\left(\AA^{3}\right)$	5200.1(9)	1523.1(3)
Z	2	2
Dcalc ($\mathrm{mg} \mathrm{m}^{-3}$)	1.300	1.833
μ / mm^{-1}	0.891	5.509
$F(000)$	2100.223	840.271
θ range (deg)	6.316 to 24.733	11.40 to 24.97
Rint	0.0533	0.0806
data/restraints/params	4372/0/251	1184/0/93
GOF on F^{2}	1.0629	1.0473
$R_{1}{ }^{\text {a }}, \mathrm{w}^{2}{ }_{2}{ }^{\mathrm{b}}$ ($\mathrm{l}>2 \sigma(\mathrm{I})$)	0.0604	0.0554
$R_{1}{ }^{\mathrm{a}}, \mathrm{w} R_{2}{ }^{\mathrm{b}}$ (all data)	0.0686	0.0612

${ }^{\mathrm{a}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma /\left|F_{\mathrm{o}}\right| ;{ }^{\mathrm{b}} \mathrm{w} R_{2}=\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$

3. Optimization conditions of the electrochemical synthesis $\mathbf{H}-1 \mathbf{e}$

Table S2.

Summary of synthesis parameters employed for synthesis of electrochemical H-1e samples

Sample	Voltage [V]	Reaction temperature	Reaction time	Yield [\%]
1	0 V	$50^{\circ} \mathrm{C}$	1 h	0
2	2 V	$30^{\circ} \mathrm{C}$	30 min	15
3	4 V	$30^{\circ} \mathrm{C}$	30 min	37
4	6 V	$30^{\circ} \mathrm{C}$	30 min	78
5	2 V	$50^{\circ} \mathrm{C}$	30 min	33
6	4 V	$50^{\circ} \mathrm{C}$	30 min	80
7	6 V	$50^{\circ} \mathrm{C}$	20 min	96

${ }^{\text {a }}$ Reaction temperature, bath temperature of electrolyzer.

Table S3.
Optimization conditions of the aerobic oxidation reaction by $\mathbf{H - 1 e}$

Entry	Solvent	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	Base	Yield [\%]
1	$\mathrm{CH}_{3} \mathrm{CN}$	75	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	>99
2	$\mathrm{CH}_{3} \mathrm{CN}$	75	KOH	91
3	$\mathrm{CH}_{3} \mathrm{CN}$	75	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	96
4	$\mathrm{CH}_{3} \mathrm{CN}$	75	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	90
5	THF	75	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	88
6	Dioxane	75	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	81
7	DMF	75	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	53
8	$\mathrm{CH}_{3} \mathrm{CN}$	25	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	23
9	THF	25	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	18
10	Dioxane	25	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	20
11	DMF	25	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	15

Reaction conditions: benzyl alcohol (1 mmol); $\mathbf{H - 1 e}$ ($10 \mathrm{~mol} \%$); TEMPO (0.5 equiv); $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv); 10 mL solvent; 1 atm air; $75^{\circ} \mathrm{C} ; 8 \mathrm{~h}$.

Table S4.
Comparison of benzyl alcohol oxidation on different MOF-based catalysts.

Entry	Catalyst	Condition	Conv. [\%]	Sel. [\%]	Refs.
1	Cu-BTC	$10 \mathrm{~h}, 95^{\circ} \mathrm{C}$, open air	23.9	99	4
2	$\mathrm{Cu}_{3}(\mathrm{BTC})_{2}$	TEMPO, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $22 \mathrm{~h}, 75^{\circ} \mathrm{C}$, oxygen atmosphere	89		5
3	Cu-FMOF	TEMPO, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $16 \mathrm{~h}, 75^{\circ} \mathrm{C}$, air	94		6
4	$\begin{aligned} & \mathrm{Cu}(\text { IMepyO })_{2} \\ & \mathrm{Cu}(\text { IDippyO })_{2} \end{aligned}$	TEMPO, $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, 10$ h, open air	$\begin{aligned} & 81 \\ & 99 \end{aligned}$		7
5	$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4}{ }^{\mathrm{t}} \mathrm{Bu}\right)\right.$ $\mathrm{Ru}(\mathrm{CO})(\mu-\mathrm{CO})]_{2}$	TEMPO, 6 h , open air	83		8
6	UiO-66	$7 \mathrm{~h}, 130^{\circ} \mathrm{C}$, oxygen atmosphere	70		9
7	$\left[\mathrm{CuLCl}_{2}\right]$	TEMPO, $\mathrm{K}_{2} \mathrm{CO}_{3}, 40$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ air, 24 h	92	100	10
8	$\begin{aligned} & \mathrm{H}-1 \\ & \mathrm{H}-1 \mathrm{e} \end{aligned}$	$\begin{aligned} & \text { TEMPO, } \mathrm{K}_{2} \mathrm{CO}_{3}, 75 \\ & { }^{\circ} \mathrm{C} \text {, air, } 8 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 96 \\ & 99 \end{aligned}$	$\begin{aligned} & 99 \\ & 99 \end{aligned}$	This work

Table S5.
Solvent accessible areas calculation by PLATON.

Area	Vol. Perc. (\%)	Vol $\left(\AA^{3}\right)$	$\mathrm{X}(\mathrm{av})$	Y (av)	$\mathrm{Z}(\mathrm{av})$
1	24.5	1281	0.250	0.294	0.074
2	24.5	1281	-0.250	0.700	-0.163

Fig. S1 SEM images of $\mathbf{H - 1 e}$ grown on Cu foil. (a) only Cu foil; (b, c) surface of Cu foil after electrolysis for 20 min ; (d) sediment collected on the surface of Cu foil after electrolysis.

Fig. S2 UV-visible spectra of methylene blue solution in methanol before and after adsorption.

Fig. S3 FESEM-EDX of $\mathbf{H - 1 e}$.

Fig. S4 Fourier-Transform Infrared Spectra (FT-IR) of organic ligand $\mathrm{H}_{4} \mathrm{~L}$ and $\mathbf{H - 1}$.

Fig. S5 (a) Thermogravimetric analysis (TGA) of H-1, H-1e and H-2; (b) Fourier-Transform Infrared Spectra (FT-IR) of $\mathbf{H - 1 e}$; the standard data and the data after 4 recycles of $\mathbf{H}-\mathbf{1 e}$ in the oxidation of alcohols.

Fig. S6 Raman spectra (200-350 cm^{-1}) obtained from bare quartz container pristine (green curve) and activated (red curve) $\mathbf{H - 1 e}$.

Fig. S7 Raman spectra (100-3250 cm^{-1}) obtained from bare quartz container pristine and activated $\mathbf{H}-1 \mathbf{e}$.

Fig. S8 Size selective effect of $\mathbf{H - 1 e}$.
The channel size was estimated from the single-crystal structure by measuring the closest distance, and the effective pore size might be different from the estimation.

Fig. S9 N_{2} sorption isotherms for $\mathbf{H}-1 \mathbf{e}$ at 77 K (inset: pore size distribution calculated by NLDFT method).
To investigate the permanent porosity of $\mathbf{H - 1 e}, \mathrm{N}_{2}$ adsorption experiments were performed. The crystalline materials were fully activated before the gas adsorption measurement. The crystals of $\mathbf{H}-1 \mathbf{e}$ were immersed in acetone three times for 12 h each, washed with methylene dichloride and then dried at room temperature to remove the guest solvents (DMF and $\mathrm{H}_{2} \mathrm{O}$). The samples were pretreated by degassing for 10 h at $100{ }^{\circ} \mathrm{C}$ under dynamic vacuum prior to the measurements. N_{2} sorption isotherm is of classical type I behavior, characteristic of microporous materials, confirming the permanent porosity of the activated $\mathbf{H}-\mathbf{1 e}$. There is a small hysteresis between adsorption and desorption isotherms, probably due to the retaining of N_{2} in the flexible small channels or pore opening comparable to the size of N_{2} molecule.

Calculated from the nitrogen adsorption data, the Langmuir surface area of $\mathbf{H - 1 e}$ is $607 \mathrm{~m}^{2} \mathrm{~g}^{-1}$. The pore size distributions calculated by the nonlocal density functional theory (NLDFT) method afforded a dominant peak at 0.83 nm . The result is a little smaller than the solventaccessible surface area estimated based on the crystal structure. The discrepancy indicates the incomplete removal of guest molecules or structural deformation during the thermal activation of $\mathbf{H - 1} \mathbf{e}$, which is often observed in MOFs. ${ }^{11}$

Fig. S10 Process of methanol oxygen in the anion of phenylcarbinol coordinated and oxidized with the copper center in the activated catalyst $\mathbf{H - 1}$. $\mathrm{O}(\mathrm{ne}-)-\mathrm{Cu}(\mathrm{dp})$ interaction energy for Cu coordinated transition state of activated catalyst $\mathbf{H} \mathbf{- 1}$ with phenylcarbinol. Free energy calculation of transition state $\Delta G(\mathrm{~A}-\mathrm{B})=-124.5 \mathrm{Kcal} / \mathrm{mol} . G(\mathrm{kcal} / \mathrm{mol})$ using M06/6$31 \mathrm{G}(\mathrm{d})$ /auto geometry optimizations followed by M06/6-311+G(2d,p)/SDD single point including SMD/acetonitrile. Orange $=\mathrm{Cu}, \operatorname{Red}=\mathrm{O}$, grey $=\mathrm{C}$, purple $=\mathrm{K}$, and light grey $=\mathrm{H}$.

Fig. S11 Alpha MO (left) and beta MO (right) of transition state with oxygen coordinated to copper center in activated catalyst $\mathbf{H - 1}$.

Fig. S12 Energy barriers of different alcohols on the catalyst $\mathbf{H}-1$ e.
The first step of oxidation occurs, when one hydrogen was dissociated from the hydroxyl group on the alcohol under the existence of the active OCSs in $\mathbf{H} \mathbf{- 1}$. This process needs to overcome the energy barrier. As Fig. S12 shown, it is found that the substrate with smaller molecular size shows lower energy barrier, and is prone to react dynamically. However, the larger substrate
shows higher energy barrier, and is not easy to react. It is consistent with our catalytic experimental results well. ${ }^{12-13}$ It is also accept that pore size (and hence mass transport) and steric hindrance show an influence on the catalytic activity of different substrate. ${ }^{14}$

Fig. S13 (a) SEM image, (b) EDX mappings and (c) the TEM image of $\mathbf{H}-1 \mathbf{e}$ samples after 4 recycles.
The SEM image and the EDS mapping of H-1e the catalyst after stability test were taken to further characterize $\mathbf{H}-\mathbf{1 e}$ after 4 recycles. As the SEM images before and after the stability test shown, there is no obvious change among the catalyst samples $\mathbf{H - 1 e}$.

Fig. S14 Two channels 1 and 2 in the asymmetric unit cell of $\mathbf{H}-1 \mathbf{e}$ (view along y-axis).

To further characterized the position of the pores in the asymmetric unit cell of $\mathbf{H - 1 e}$, software PLATON was introduced to calculate the pores. As the Fig. S14 and Table S5 shown, there are two channels 1 and 2 in the asymmetric unit cell. The volume of each pore is about 1281 \AA^{3} with 24.5% in total volume of the unit cell. The coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) of the two channels are $0.250,0.294,0.074$ and $-0.250,0.700,-0.163(\mathrm{av})$, respectively.

Cartesian coordinates used for DFT Study:

The structures of all compounds were optimized using Gaussian09 Revision A. 02 using the M06L density functional and LANL2DZ basis set and effective core potential with the automatically generated density fitting functions. ${ }^{15-18}$ Minima and transition states were confirmed by vibrational frequency calculations. Single point calculations were performed using the M06-2X functional and the $6-311+G(2 d, p)$ basis set on nonmetal atoms and SDD basis set and effective core potential for copper. ${ }^{19-23}$ To account for solvent effects, the SMD implicit solvent model with acetonitrile was used in these single point calculations. ${ }^{24}$
Cartesian coordinates for all structures and gas phase Gibbs energy and Gibbs energy including solvation correction are listed below. [To obtain the Gibbs free energy with relevant standard state reference, $G^{o}(298 \mathrm{~K}, 1 \mathrm{M})=G^{o^{*}}(298 \mathrm{~K}, 1 \mathrm{~atm})+R T \ln (0.08206 \mathrm{~T})$, where R is the gas constant and T is the temperature. $\Delta G_{0}(298 \mathrm{~K}, 1 \mathrm{M})=\Delta G_{0}{ }^{*}(298 \mathrm{~K}, 1 \mathrm{~atm})$ when there is no mole change from the reactant to the product. ${ }^{25}$
Energy is from M06/6-311g (2d,p)/SDD/SMD(acetonitrile) single points. Gibbs Energy uses this energy and the Gibbs energy correction from the optimization and frequency calculations with M061/LANL2DZ. All energies are in Hartrees. Grey spheres represent carbon, light grey for hydrogen, red for oxygen, purple for potassium, and yellow for copper.
a. Cartesian coordinates used for phenylmethanol

$E=-346.601330566$ Hartrees
$G=-346.500601566$ Hartrees

C	1.86358485	1.01591594	-0.08506814
C	0.49802008	1.29556494	-0.02409142
C	-0.43900678	0.26120826	0.08124877
C	0.01270748	-1.06252709	0.11256938
C	1.37792069	-1.34401972	0.04222704
C	2.30797142	-0.30718475	-0.05258383
H	2.57865930	1.83037375	-0.16759745
H	0.15693997	2.32843212	-0.06205862
H	-0.71388858	-1.86541270	0.17849364
H	1.71578443	-2.37707610	0.06191856
H	3.37067795	-0.52813180	-0.10722912
C	-1.91139310	0.58279658	0.20507984
H	-2.15660759	0.76358244	1.26604439
H	-2.12856016	1.51855939	-0.33522028
O	-2.68412923	-0.49811934	-0.30543894

H $\quad-3.60879935-0.33589735 \quad-0.06712940$
b. Cartesian coordinates used for $\mathrm{K}_{2} \mathrm{CO}_{3}$

$E=-1463.68424650$ Hartrees
$G=-1,463.7006045$ Hartrees

C	-0.00029261	0.80129415	0.00003953
O	1.12756730	1.41271108	0.00070022
O	-1.12794076	1.41302839	-0.00072409
O	-0.00041560	-0.54970721	0.00012089
K	2.48481023	-0.60556248	-0.00016276
K	-2.48438559	-0.60580715	0.00010943

c. Cartesian coordinates used for $\mathbf{H - 1}$

$E=-4120.97407473$ Hartrees
$G=-4120.81074173$ Hartrees
Cu
-0.00000495
-1.15371096
0.00067952

Cu
-0.00000492
1.15370885
-0.00078329
-0.00059913
1.82624149
-1.13246694
0.00058302
1.82624005
1.13246797
0.00130203

O
O

C
C
C
C
H
C
H
C

H

H
H
C
$-1.82625932-1.13247134$
-0.00130044
3.90115149
0.00000204
0.00001915
$4.60739734-1.21159760$
-0.00051812
$4.60739643 \quad 1.21160092 \quad 0.00057520$
$5.99998554-1.21034388 \quad-0.00049768$
$4.05098483-2.14212781 \quad-0.00094714$
$5.99998580 \quad 1.21034812 \quad 0.00059193$
$4.05098506 \quad 2.14213198 \quad 0.00098804$
$6.69810871 \quad 0.00000272 \quad 0.00005665$
$6.54160655-2.15216956-0.00091516$
$6.54160496 \quad 2.15217491 \quad 0.00102301$
$7.78497459 \quad 0.00000197 \quad 0.00007069$
$-3.90112791 \quad-0.00000537 \quad 0.00002252$

C	-4.60737232	1.21159185	0.00085815
C	-4.60738686	-1.21159266	-0.00079901
C	-5.99996479	1.21035041	0.00091823
H	-4.05096406	2.14212440	0.00144910
C	-5.99998062	-1.21033245	-0.00082961
H	-4.05099629	-2.14213572	-0.00140236
C	-6.69810156	0.00001286	0.00005162
H	-6.54156951	2.15218519	0.00162597
H	-6.54159565	-2.15216122	-0.00152622
H	-7.78496803	0.00002064	0.00006273
C	-2.41794099	-0.00000927	0.00000372
C	2.41793306	0.00000119	-0.00000329

d. Cartesian coordinates used for intermediate

$E=-4466.73884285$ Hartrees
$G=-4466.46534685$ Hartrees

Cu	-0.00000677	-1.77371066	0.00128950
O	1.82623968	-1.75246664	0.00001086
O	1.82623823	0.51246827	0.00119300
O	-1.82626114	-1.75247104	0.00191202
O	-1.82625854	0.51245100	-0.00069045
C	3.90114968	-0.61999766	0.00062913
C	4.60739552	-1.83159730	0.00009187
C	4.60739462	0.59160122	0.00118518
C	5.99998372	-1.83034358	0.00011230
H	4.05098301	-2.76212751	-0.00033716
C	5.99998399	0.59034842	0.00120191
H	4.05098324	1.52213228	0.00159802
C	6.69810689	-0.61999698	0.00066663
H	6.54160473	-2.77216925	-0.00030518
H	6.54160314	1.53217521	0.00163300
H	7.78497277	-0.61999773	0.00068067

C	-3.90112973	-0.62000507	0.00063250
C	-4.60737414	0.59159215	0.00146813
C	-4.60738867	-1.83159236	-0.00018903
C	-5.99996661	0.59035071	0.00152821
H	-4.05096587	1.52212470	0.00205908
C	-5.99998243	-1.83033215	-0.00021962
H	-4.05099811	-2.76213542	-0.00079238
C	-6.69810338	-0.61998684	0.00066160
H	-6.54157132	1.53218549	0.00223596
H	-6.54159746	-2.77216092	-0.00091624
H	-7.78496984	-0.61997906	0.00067271
C	-2.41794280	-0.62000897	0.00061371
C	2.41793125	-0.61999851	0.00060669
O	-0.00000029	2.73370809	-0.00233776
Cu	-0.00000673	0.53370915	-0.00017330
C	-1.34795413	3.21106321	0.00491050
H	-1.85645929	2.85684858	-0.86735924
H	-1.84861683	2.85246304	0.87992066
C	-1.34714890	4.75105815	0.00877216
C	-1.34671274	5.45170997	-1.19717502
C	-1.34646127	5.44559180	1.21907753
C	-1.34678764	6.84686532	-1.19357537
H	-1.34762471	4.90466132	-2.15110307
C	-1.34605712	6.84041239	1.22259849
H	-1.34674611	4.89293700	2.16979774
C	-1.34661678	7.54112832	0.01619609
H	-1.34689370	7.39907955	-2.14447088
H	-1.34550709	7.38807561	2.17629599
H	-1.34649588	8.64072819	0.01921624

References

1 T. Tu, T. Maris and J. D, Wuest, Synthesis and Structure of Spirocyclic Tetraethers Derived from [1,1'-Binaphthalene]-2,2'-diol and Pentaerythritol, J. Org. Chem., 2008, 73 (14), 52555263.

2 M. Baldrighi, P. Metrangolo, F. Meyer, T. Pilati, D. Proserpio, G. Resnati and G. Terraneo, Halogen-bonded and interpenetrated networks through the self-assembly of diiodoperfluoroarene and tetrapyridyl tectons, J. Fluorine Chem., 2010, 131, 1218-1224.
3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J.A.K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Cryst.,2009, 42, 339-341.

4 L. Peng, S. Wu, X. Yang, J. Hu, X. Fu, M. Li, L. Bai, Q. Huo and J. Guan, Oxidation of benzyl alcohol over metal organic frameworks M-BTC ($\mathrm{M}=\mathrm{Co}, \mathrm{Cu}, \mathrm{Fe})$, New J. Chem., 2017, 41, 2891-2894.
5 A. Dhakshinamoorthy, M. Alvaro and H. Garcia, Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal-Organic Frameworks Assisted by TEMPO, ACS Catal., 2010, 1, 4853.

6 S. C. Chen, S. N. Lu, F. Tian, N. Li, H. Y. Qian, A.-J. Cui, M.-Y. He and Q. Chen, Highly selective aerobic oxidation of alcohols to aldehydes over a new $\mathrm{Cu}(\mathrm{II})$-based metal-organic framework with mixed linkers, Catal. Commun., 2017, 95, 6-11.
7 I. Ahmad Bhat, I. Avinash, S. Kumar Sachan, S. Singh and G. Anantharaman, Efficient Synthesis of $\mathrm{Cu}(\mathrm{II})-\mathrm{N}$-Heterocyclic Carbene Complexes in Water and Their Activity Towards Aerobic Alcohol Oxidation, Eur. J. Inorg. Chem., 2021, 2021, 4560-4565.
8 Z. Hao, X. Yan, Z. Li, R. Wu, Z. Ma, S. Li, Z. Han, X. Zheng and J. Lin, Efficient aerobic oxidation of alcohols to aldehydes and ketones using a ruthenium carbonyl complex of a tert-butyl-substituted tetramethylcyclopentadienyl ligand as catalyst, Transit. Metal. Chem., 2018, 43, 635-640.
9 H. Ghasempour, F. ZareKarizi, A. Morsali and X.-W. Yan, Development of a highly porous Fe-based MOF using symmetrically incompatible building blocks: Selective oxidation of benzyl alcohols, Appl. Mater. Today, 2021, 24, 101157.
10 A. Bocian, A. Gorczyński, D. Marcinkowski, S. Witomska, M. Kubicki, P. Mech, M. Bogunia, J. Brzeski, M. Makowski, P. Pawluć and V. Patroniak, New benzothiazole based copper(II) hydrazone Schiff base complexes for selective and environmentally friendly oxidation of benzylic alcohols: The importance of the bimetallic species tuned by the choice of the counterion, J. Mol. Liq., 2020, 302, 112590.
11 L. L. Liang, J. Zhang, S.-B. Ren, G. W. Ge, Y. Z. Li, H. B. Du and X. Z. You, Rational synthesis of a microporous metal-organic framework with PtS topology using a semi-rigid tetrahedral linker, CrystEngComm., 2010, 12, 2008-2010.
12 J . Goclon and K. Winkler, Influence of nitrogen vacancies on selective oxidation of aromatic alcohols on g-C3N4: A comparative DFT study, Mol, Catal., 2020, 482, 110747.
13 Z. Li, T. Fan, H. Li, X. Lu, S. Ji, J. Zhang, J. H. Horton, Q. Xu and J. Zhu, Atomically Defined Undercoordinated Copper Active Sites over Nitrogen-Doped Carbon for Aerobic Oxidation of Alcohols, Small, 2022, 18, 2106614.

14 X. C. Kang, K. Lyu, L. L. Li, J. N. Li, L. Kimberley, B. Wang, L. F. Liu, Y. Q. Cheng, M. D. Frogley, S. Rudić, A. J. Ramirez-Cuesta, R. A.W. Dryfe, B. X. Han, S. H. Yang and M.

Schröder, Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis, Nat. Commun., 2019, 10, 4466.
15 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

16 Y. Zhao and D. G. Truhlar. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, J. Chem. Phys., 2006, 125, 194101, 1-18.
17 T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Plenum, New York, 1977, 3, S4, 1-28.
18 P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations potentials for the transition-metal atoms Sc to Hg, J. Chem. Phys., 1985, 82, 270-283.
19 Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 2008, 120, 215-241.
20 A. D. McLean and G. S. Chandler, Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18, J. Chem. Phys., 1980, 72, 5639-5648.
21 K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions, J. Chem. Phys., 1980, 72, 650-654.
22 H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpály, and H. Preuss, Cu and Ag as one-valence-electron atoms - CI results and quadrupole corrections of Cu 2 , Ag2, CuH, and AgH, J. Chem. Phys., 1984, 81, 2732-2736.
23 D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements, Theor. Chem. Acc., 1990, 77, 123-141.
24 A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B., 2009, 113, 63786396.

25 P. K. Behera, P. Choudhury, S. K. Sahu, R. R. Sahu, A. N. Harvat, C. McNulty, A. Stitgen, J. Scanlon, M. Kar and L. Rout, Oxygen Bridged Bimetallic CuMoO_{4} Nanocatalyst for Benzylic Alcohol Oxidation; Mechanism and DFT Study, Asian J. Org. Chem., 2021, 10, 1117-1122.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.62(\mathrm{~s}, 4 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $8 \mathrm{H}), 4.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H})$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.62(\mathrm{~s}, 4 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $8 \mathrm{H}), 4.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H})$.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

1. benzaldehyde: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.71$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 192.31, 136.45, 134.42, 129.71, 128.98.

2. 4-methylbenzaldehyde: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 192.01$, 145.56, 134.32, 129.91, 21.95.

๕
$\stackrel{y}{+}$
I

[^0]3. 4-methoxybenzaldehyde: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) δ 190.76, 164.65, 131.99, 130.06, 114.37, 55.64.

[^1]4. 4-nitrobenzaldehyde: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 8.07 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 190.14,140.08,130.44,124.29,99.98$.

5. 3-nitrobenzaldehyde: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H})$, $8.50(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 189.62,137.45,134.57,130.36,124.44$.

[^2]6. 2-naphthaldehyde: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.19(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H})$, $8.05-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{dt}, \mathrm{J}=23.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 192.16$, $136.48,134.46,134.18,132.69,129.54,129.09,128.09,127.09,122.82$.

$\underbrace{\infty}$

7. pyrene-4-carbaldehyde: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, \mathrm{J}=14.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dt}, \mathrm{J}=$ $23.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 193.62,167.76,136.68,135.00,133.32$, 133.27, 131.25, 129.92, 129.71, 129.59, 128.99.

8. acetophenone: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.96(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 198.13$, 137.28, 133.18, 128.67, 128.40, 26.71.

9. 1-(p-tolyl)ethan-1-one: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.85(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) δ 197.79, 143.87, 134.84, 129.30, 128.50, 26.57, 21.69.

[^3]10. benzophenone: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.87-7.76$ (m, 2H), $7.63-7.55$ (m, 1H), $7.49(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 196.68$, 137.66, 132.37, 130.03, 128.26.

[^4]
[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array} 9$

[^1]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ (\mathrm{ppm})\end{array} 90$

[^2]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} 90$

[^3]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & 90\end{array}$

