Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

## **Supporting Information**

### pH-Responsive Iridium(III) Two-Photon Photosensitizer Loaded CaCO<sub>3</sub>

#### Nanoplatform for Combined Ca<sup>2+</sup> Overload and Photodynamic Therapy

Jinchao Shen,<sup>a‡</sup> Xinxing Liao,<sup>a‡</sup> Weijun Wu,<sup>a‡</sup> Tao Feng,<sup>a</sup> Johannes Karges,<sup>b</sup> Mingwei Lin,<sup>a</sup> Hongjie Luo,<sup>a</sup> Yu Chen,<sup>a</sup> Hui Chao<sup>a,c</sup>\*

 <sup>a</sup> MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
 <sup>b</sup> Department of Chemistry and Biochemistry, University of California, San Diego, 9500
 Gilman Drive, La Jolla, CA 92093, United States.
 <sup>c</sup> MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China

\* Corresponding author: ceschh@mail.sysu.edu.cn (H. Chao)

# Table of contents

| Figure S1. Synthesis strategy and structure of Ir1, IrOH, and IrCOOH                                                     |
|--------------------------------------------------------------------------------------------------------------------------|
| Figure S2. ESI-MS, HR-ESI-MS, and <sup>1</sup> H-NMR spectra of Ir14                                                     |
| Figure S3. ESI-MS, HR-ESI-MS, and <sup>1</sup> H-NMR spectra of IrOH                                                     |
| Figure S4. ESI-MS, HR-ESI-MS, and <sup>1</sup> H-NMR spectra of IrCOOH.                                                  |
| Figure S6. Photographs of Ir1-CaCO <sub>3</sub> , IrOH-CaCO <sub>3</sub> , IrCOOH-CaCO <sub>3</sub> upon UV irradiation7 |
| Figure S7. SEM images of CaCO <sub>3</sub> , Ir-CaCO <sub>3</sub> , and Ir-CaCO <sub>3</sub> @PEG nanoparticles7         |
| Figure S8. BJH and BET surface area analyses8                                                                            |
| Figure S9. FT-IR spectrum of CaCO <sub>3</sub> , IrCOOH, and IrCOOH-CaCO <sub>3</sub> 8                                  |
| Figure S10. The overlap of the IrCOOH emission spectra upon one and two-photon excitation.                               |
|                                                                                                                          |
| Figure S11. Electron spin resonance spectrum                                                                             |
| Figure S12. The DPBF decay curves9                                                                                       |
| Figure S13. Lysosome colocalization analysis by confocal laser scanning microscopy images.                               |
|                                                                                                                          |
| Figure S14. Mitochondria colocalization analysis by confocal laser scanning microscopy                                   |
| images10                                                                                                                 |
| Figure S15. Subcellular distribution of IrCOOH or IrCOOH-CaCO3@PEG                                                       |
| Figure S16. Fluorescent microscopy images of 4T1 cells stained with Calcein-AM/EthD-111                                  |
| Figure S17. Fluorescent microscopy images of 4T1 cells stained with DCFH12                                               |
| Figure S18. Fluorescent microscopy images of 4T1 cells stained with JC-1                                                 |
| Figure S19. Fluorescent microscopy images of 4T1 cells stained with Capas3/7                                             |
| Figure S20. Flow-cytometry apoptosis assay of 4T1 cells stained with Annexin-FITC/PI13                                   |
| Figure S21. Fluorescent microscopy images of 4T1 3D multicellular tumour spheroid stained                                |
| with DCFH                                                                                                                |
| Figure S22. The average radiant efficiency14                                                                             |
| <b>Figure S23</b> . Change in tumor-inhibition rate after various treatments                                             |
| Figure S24. Histopathologic slices with H&E staining of the major organs of 4T1 tumor-bearing                            |
| mice after different treatments15                                                                                        |
| Table S1. The Ir(III) complexes loading yield                                                                            |
| Table S2. Hydrodynamic diameter and polydispersity determined by dynamic light scattering.                               |
|                                                                                                                          |

#### **FIGURES AND TABLE**



Figure S1. Synthesis strategy and structure of Ir1, IrOH, and IrCOOH.



Figure S2. ESI-MS, HR-ESI-MS, and <sup>1</sup>H-NMR spectra of Ir1.



Figure S3. ESI-MS, HR-ESI-MS, and <sup>1</sup>H-NMR spectra of IrOH.



Figure S4. ESI-MS, HR-ESI-MS, and <sup>1</sup>H-NMR spectra of IrCOOH.



**Figure S5**. Absorption (A, B, C) and emission spectra (D, E, F) of  $CaCO_3$  nanocarriers loaded with the respective Ir(III) complexes.



Figure S6. Photographs of Ir1-CaCO<sub>3</sub>, IrOH-CaCO<sub>3</sub>, IrCOOH-CaCO<sub>3</sub> upon UV irradiation.



Figure S7. SEM images of CaCO<sub>3</sub>, Ir-CaCO<sub>3</sub>, and Ir-CaCO<sub>3</sub>@PEG nanoparticles.



**Figure S8.** Barrett-Joyner-Halenda (BJH) pore size and Bunauer-Emmett-Teller (BET) surface area analyses.



Figure S9. FT-IR spectrum of CaCO<sub>3</sub>, IrCOOH, and IrCOOH-CaCO<sub>3</sub>.



Figure S10. The overlap of the IrCOOH emission spectra upon one and two-photon excitation.



**Figure S11**. Electron spin resonance spectrum of the respective compound with the singlet oxygen scavenger 2,2,6,6-tetramethylpiperidine in the dark or upon two-photon laser irradiation (750 nm, 50 mW, 300 s).



**Figure S12**. Change in absorbance of the singlet oxygen scavenger 1,3-diphenylisobenzofuran upon incubation with methylene blue (MB) or **IrCOOH** and irradiation at 405 nm in methanol in various time intervals.



**Figure S13**. Confocal laser scanning microscopy images and corresponding colocalization of 4T1 cells incubated with **IrCOOH-CaCO<sub>3</sub>@PEG** ( $\lambda$ ex = 405 nm,  $\lambda$ em = 580 - 600 nm) as well as LysoTracker<sup>TM</sup> Green DND-26 (LTG) ( $\lambda$ ex = 488 nm,  $\lambda$ em = 500 - 520 nm) at different time points. Scale bar = 10 µm.



**Figure S14**. Confocal laser scanning microscopy images and corresponding colocalization coefficient (R) of 4T1 cells incubated with **IrCOOH** or **IrCOOH-CaCO<sub>3</sub>@PEG** ( $\lambda_{ex}$  = 405 nm,  $\lambda_{em}$  = 580 - 600 nm) as well as Mito Tracker Deep Red (MTDR) ( $\lambda_{ex}$  = 644 nm,  $\lambda_{em}$  = 650 - 670 nm). Scale bar = 20 µm.



**Figure S15.** Subcellular distribution of **IrCOOH** or **IrCOOH-CaCO<sub>3</sub>@PEG** is determined by inductively coupled plasma mass spectrometry upon incubation for 8 h.



**Figure S16**. Confocal laser scanning microscopy images of 4T1 cells incubated with **IrCOOH**, **CaCO<sub>3</sub>@PEG**, or **IrCOOH-CaCO<sub>3</sub>@PEG** in the dark or upon 405 nm laser irradiation (12 J cm<sup>-2</sup>), followed by staining with Calcein-AM/EthD-1 (Calcein-AM for live cells:  $\lambda_{ex} = 488$  nm,  $\lambda_{em} = 500-520$  nm; EthD-1 for dead cells:  $\lambda_{ex} = 543$  nm,  $\lambda_{em} = 590 - 630$  nm). Scale bar = 50  $\mu$ m.



**Figure S17.** Confocal laser scanning microscopy images of 4T1 cells incubated with different materials and stained with 2,7-dichlorodihydrofluorescein ( $\lambda_{ex}$  = 488 nm,  $\lambda_{em}$  = 500-520 nm) in the dark or upon 405 nm irradiation. Scale bar = 50 µm.



**Figure S18.** Confocal laser scanning microscopy images of 4T1 cells incubated with the specific mitochondrial membrane potential dye JC-1 and treated with different materials in the dark or upon 405 nm irradiation. Monomer:  $\lambda_{ex}$  = 488 nm,  $\lambda_{em}$  = 500-520 nm; Aggregates:  $\lambda_{ex}$  = 543 nm,  $\lambda_{em}$  = 590-630 nm. Scale bar = 20 µm.



**Figure S19.** Confocal laser scanning microscopy images of 4T1 cells incubated with the specific caspase 3/7 dye and treated with different materials in the dark or upon 405 nm irradiation.  $\lambda_{ex}$  = 488 nm,  $\lambda_{em}$  = 500-520 nm. Scale bar = 50 µm.



**Figure S20.** Flow-cytometry assay of Annexin-FITC/PI stained 4T1 cells incubated with different materials in the dark or upon 405 nm irradiation.



**Figure S21.** Confocal laser scanning microscopy images of 4T1 3D multicellular tumour spheroid incubated with different materials and stained with 2,7-dichlorodihydrofluorescein ( $\lambda_{ex}$  = 488 nm,  $\lambda_{em}$  = 500-520 nm) in the dark or upon 750 nm irradiation. Scale bar = 100 µm.



**Figure S22.** (A) Time-dependent observation of the luminescence signal at the tumor site after intravenous injection. (B) Average luminescence within the tumor and main organs 12 h after intravenous injection.



Figure S23. Tumor-inhibition rate after various treatments.



**Figure S24**. Histopathologic slices of the major organs (heart, liver, spleen, lung, kidney, and brain) of 4T1 tumor-bearing mice which were stained with hematoxylin and eosin staining after different treatments.

 Table S1. The Ir(III) complexes loading yield.

|                          | Ca (ppb)    | lr (ppb)   | Loading yield |
|--------------------------|-------------|------------|---------------|
| Ir1-CaCO <sub>3</sub>    | 1124.1±27.8 | 1.28±0.02  | 1.2%          |
| IrOH-CaCO₃               | 1647.1±12.8 | 1.13±0.06  | 0.7%          |
| IrCOOH-CaCO <sub>3</sub> | 1443.3±10.4 | 14.90±1.29 | 15.6%         |

The Ca was measured by ICP-OES, while the Ir was measured by ICP-MS.

| Sample                        | Diameter (nm) | Polydispersity |
|-------------------------------|---------------|----------------|
| lr1                           | /             | /              |
| IrOH                          | /             | /              |
| IrCOOH                        | /             | /              |
| CaCO <sub>3</sub>             | 126.73±0.65   | 0.100±0.019    |
| Ir1- CaCO <sub>3</sub>        | 136.17±0.83   | 0.116±0.029    |
| IrOH- CaCO <sub>3</sub>       | 137.16±1.38   | 0.125±0.016    |
| IrCOOH-CaCO <sub>3</sub>      | 168.76±3.73   | 0.169±0.014    |
| IrCOOH-CaCO <sub>3</sub> @PEG | 188.75±3.79   | 0.196±0.030    |

**Table S2**. Hydrodynamic diameter and polydispersity determined by dynamic light scattering.