Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supplementary materials

Constructing NiCo₂Se₄/NiCoS₄ heterostructures for high-performance aluminum batteries cathode

Figure. S1 SEM image and corresponding elemental mapping of pure $NiCo_2Se_4$.

Figure. S2 SEM image and corresponding elemental mapping of heterostructured NiCoS₄.

Figure. S3 SEM image and corresponding elemental mapping of heterostructured $NiCo_2Se_4/NiCoS_4$.

Figure. S4 TEM image of heterostructured NiCo₂Se4/ NiCoS4.

Figure. S5 The charge-discharge curves of heterostructured NiCo₂Se₄/ NiCoS₄ for different cycles.

Figure. S6 The charge-discharge curves corresponding to Figure 2c of the heterostructured $NiCo_2Se_4/NiCoS_4$ cathode from 0.5 A g⁻¹ to 1 A g⁻¹.

Figure. S7 The XPS spectra of Se 3d at fully charged and discharged states, respectively.

Sample Quantity m_0 (g)	Constant Volume V_0 (mL)	Element	Element Concentration of Solution $C_o \pmod{L}$	Dilution Multiple f	Element Concentration in Digestion Solution C_l (mg/L)	Element Content C_x (mg/kg)	Element Content W (%)
0.0523	25	S	2.889	100	288.900	138097.51	13.810
0.0523	25	Se	5.019	100	501.900	239913.96	23.991

Table. S1 The element content of Se and S in NiCo₂Se₄/NiCoS₄ by ICP-OES.

The element content (W) of Se and S was calculated by the following equation:

$$W(\%) = \frac{C_X(mg/kg)}{10^6} * 100\%$$

$$C_X(mg/kg) = \frac{C_0(mg/L) * f * V_0(mL) * 10^{-3}}{m_0(g) * 10^{-3}} = \frac{C_1(mg/L) * V_0(mL) * 10^{-3}}{m_0(g) * 10^{-3}}$$

 $C_{\mathtt{l}}(mg/L) = C_{\mathtt{0}}(mg/L) * f$

		Cycling performance	Ref.	
Cathode materials	Electrolyte	capacity, current density, cycle number		
NiCo ₂ Se ₄ /NiCoS ₄	AlCl ₃ : [EMIm]Cl =1.1:1	112mAh g ⁻¹ /1000mA g ⁻¹ /195cycle	This work	
Ni ₂ P/rGO	AlCl ₃ : [EMIm]Cl=1.3:1	73mAh g ⁻¹ /100mA g ⁻¹ /500th	1	
graphite nanoflakes	AlCl ₃ : [EMIm]Cl=1.3:1	73mAh g ⁻¹ /200mA g ⁻¹ /1000th	2	
Cu _{2-x} Se	AlCl ₃ : [EMIm]Cl=1.3:1	100mAh g ⁻¹ /200mA g ⁻¹ /100th	3	
CoSe	AlCl ₃ : [EMIm]Cl= 1.3:1	62.4mAh g ⁻¹ /5000mA g ⁻¹ /100th	4	
Zn/Co-Se@C	AlCl ₃ : [EMIm]Cl= 1.3:1	79mAh g ⁻¹ /1000mA g ⁻¹ /400th	5	
Co ₃ S ₄	AlCl ₃ : [EMIm]Cl= 1.3:1	90mAh g ⁻¹ /50mA g ⁻¹ /150th	6	
SnSe	AlCl ₃ : [EMIm]Cl=1.3:1	107mAh g ⁻¹ /300mA g ⁻¹ /100th	7	
MoS2	AlCl ₃ : [EMIm]Cl=1.3:1	66.7mAh g ⁻¹ /40mA g ⁻¹ /100th	8	
Ni ₃ S ₂ @graphene	AlCl ₃ : [EMIm]Cl =1.3:1	60 mAh g ⁻¹ /100 mA g ⁻¹ /100th	9	

Table. S2 Comparison of energy storage performance between NiCo₂Se₄/NiCoS₄ and other AIB cathode materials previously reported.

References:

- 1. J. Tu, M. Wang, X. Xiao, H. Lei and S. Jiao, Nickel Phosphide Nanosheets Supported on Reduced Graphene Oxide for Enhanced Aluminum-Ion Batteries, *ACS Sustainable Chemistry & Engineering*, 2019, 7, 6004-6012.
- 2. J. Tu, J. Wang, S. Li, W. L. Song, M. Wang, H. Zhu and S. Jiao, High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes, *Nanoscale*, 2019, **11**, 12537-12546.
- 3. J. Jiang, H. Li, T. Fu, B. J. Hwang, X. Li and J. Zhao, One-Dimensional Cu2xSe Nanorods as the Cathode Material for High-Performance Aluminum-Ion Battery, *ACS Appl Mater Interfaces*, 2018, **10**, 17942-17949.
- 4. W. Xing, D. Du, T. Cai, X. Li, J. Zhou, Y. Chai, Q. Xue and Z. Yan, Carbonencapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery, *Journal of Power Sources*, 2018, **401**, 6-12.
- 5. Z. Li, W. Lv, G. Wu and W. Zhang, Rhombic dodecahedron hetero-structure Zn/Co–Se@C as cathode material for aluminum batteries with excellent electrochemical performance, *Journal of Power Sources*, 2021, **511**.
- 6. H. Li, H. Yang, Z. Sun, Y. Shi, H.-M. Cheng and F. Li, A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries, *Nano Energy*, 2019, **56**, 100-108.
- 7. Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo and F. Kang, SnSe nano-particles as advanced positive electrode materials for rechargeable aluminum-ion batteries, *Chemical Engineering Journal*, 2021, **403**.
- 8. Z. Li, B. Niu, J. Liu, J. Li and F. Kang, Rechargeable Aluminum-Ion Battery Based on MoS2 Microsphere Cathode, *ACS Appl Mater Interfaces*, 2018, **10**, 9451-9459.
- 9. S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu and S. Jiao, A Novel Aluminum-Ion Battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene, *Advanced Energy Materials*, 2016, **6**.