Supporting Information

A Lead-free Halide Hybrid Perovskite (TMHD)BiCl₅ for the Ultraviolet Photodetection

Wen Weng, ^{abc} Qin Chen, ^b Yipeng Fan, ^b Zhou Li,^b Haizhou Huang, ^{ac} Hongchun Wu, ^{abc} Chengmin Ji, ^{*ab} and Wenxiong Lin ^{*ac}

- ^[a] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
- ^[b] University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
- ^[c] Fujian Science & Technology Innovation Laboratory for Optoelectcronic Information of China, Fuzhou, 350108, P.R. China

Experimental Section

Synthesis. All the chemical reagents were purchased as high purity (AR grade) and used without any further purification. The compound of $(TMHD)BiCl_5$ has been synthesized in aqueous solution of Bi_2O_3 and TMHD in a ratio of 2:1 in concentrated HCl.

Single-crystal structure determination. Single-crystal X-ray diffractions for 1 were performed on a Bruker 8 diffractometer with the Mo K α radiation at 300K. The data were processed by the Crystalclear software package. The structures of 1 were solved by direct methods and then refined by the full-matrix least-squares refinements on F^2 using SHELXLTL software package. Crystallographic data and structure refinements for 1 at different temperatures are given in Table S1.

The optical ultraviolet-visible absorption spectrum measurements. The UV absorptions in solid state were measured at room temperature on a PE Lambda 900 UV-Visible spectrophotometer.

Computational description. Single-crystal structure data of **1** at 300 K was used for the theoretical calculations. Band structure and partial density of states (PDOS) were performed by the DFT method within the total-energy code CASTEP. The exchange and correlation effects were treated by Perdew-Burke-Ernzerh in the generalized gradient approximation. The core-electrons interactions between the ionic cores and the electrons were described by the norm-conserving pseudo potential.

Fabrication and Measurements of Detectors: The surface of crystal **1** was cleaned with nitrogen flow before device fabrication. The vertical-type detectors were fabricated based on single crystals of **1**, with an electrode length of about 1 mm and gold electrode spacing of about 300 μ m. The photoresponse experiments were performed by using a Keithley 6517B source meter at room temperature under 266 nm illumination.

Figure S1. N-H•••Cl hydrogen bonds generated from the N atom of organic cation and Cl atom of inorganic skeleton.

Figure S2. I–V curves of (TMHD)BiCl₅ under 405 nm light illumination with different power density.

Figure S3. I-t curves of (TMHD)BiCl₅ and the photoresponse time.

Figure S4. Variation in the photocurrent of (TMHD)BiCl₅ with exposure time in air. After exposure to the air for 1 week, the photocurrent of the device maintained > 95.0% of its initial state.

Tables

Empirical formula	$C_{10}H_{26}Bi_7Cl_5N_2$
Formula weight	560.56
Temperature/K	173(2)
Space group	$P2_1/c$
a/Å	5.565000(10)
b/Å	18.5529(5)
c/Å	18.7630(5)
$\alpha/^{\circ}$	90.00
β/°	97.124(2)
$\gamma^{\prime \circ}$	90.00
Volume/ Å ³	1922.27(8)
Z	4
$\rho_{calc}g/cm^3$	1.937
µ/mm ⁻¹	9.855
F(000)	1072.0
Radiation	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	6.92 to 52.74
Index ranges	$-6 \le h \le 6, -20 \le k \le 23, -22 \le l \le 23$
Reflections collected	11859
Independent reflections	3903 [$R_{int} = 0.0394$, $R_{sigma} = N/A$]
Data/restraints/parameters	3903/0/167
Goodness-of-fit on F ²	1.131
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0381, wR_2 = 0.0928$
Largest diff. peak/hole / e Å ⁻³	1.16/-3.54

Table S1. Crystal Data and Structure Refinement

i ubie bai i ne bona lenguis	Table	S2 .	The	bond	lengths
------------------------------	-------	-------------	-----	------	---------

	lenguis		
Bond	(Å)	Bond	(Å)
Bi(1) - Cl(5)	2.5466(18)	C(8) - C(9)	1.512(9)
Bi(1) - Cl(3)	2.5973(16)	C(9) - C(10)	1.511(10)
Bi(1) - Cl(2)	2.6052(17)	C(10) - C(10) ³	1.507(13)
Bi(1) - Cl(4)	2.7614(16)	N(1) - C(1)	1.475(9)
Bi(1) - Cl(1)	2.8061(16)	N(1) - C(2)	1.485(9)
$Bi(1) - Cl(5)^1$	3.0191(18)	N(1) - C(3)	1.501(8)
$Cl(5) - Bi(1)^2$	3.0191(18)	C(4) - C(3)	1.501(10)
N(2) - C(7)	1.478(8)	C(4) - C(5)	1.543(10)
N(2) - C(6)	1.492(8)	C(5) - C(5) ⁴	1.481(14)
N(2) – C(8)	1.495(8)		

¹-1+X,+Y,+Z; ²1+X,+Y,+Z; ³1-X,1-Y,1-Z; ⁴-1-X,1-Y,-Z

Table S	5 3. The	e bond	l ang	les
---------	-----------------	--------	-------	-----

Table S3. The bond ang	les		
Bond	Angle/°	Bond	Angle/°
Cl(5) - Bi(1) - Cl(3)	90.45(6)	Cl(2) - Bi(1) - Cl(1)	88.19(5)
Cl(5) - Bi(1) - Cl(2)	91.60(6)	Cl(4) - Bi(1) - Cl(1)	87.33(5)
Cl(3) - Bi(1) - Cl(2)	93.83(6)	$Cl(5) - Bi(1) - Cl(5)^{1}$	178.21(9)
Cl(5) - Bi(1) - Cl(4)	87.79(6)	$Cl(3) - Bi(1) - Cl(5)^{1}$	87.89(5)
Cl(3) - Bi(1) - Cl(4)	90.67(5)	Cl(2) - Bi(1) – Cl(5) ¹	89.18(6)
Cl(2) - Bi(1) - Cl(4)	175.47(5)	Cl(4) - Bi(1) - Cl(5) ¹	91.56(5)
Cl(5) - Bi(1) - Cl(1)	90.54(5)	Cl(1) - Bi(1) - Cl(5) ¹	91.09(5)
Cl(3) - Bi(1) - Cl(1)	177.73(5)	$Bi(1) - Cl(5) - Bi(1)^2$	178.21(9)

¹-1+X,+Y,+Z; ²1+X,+Y,+Z; ³1-X,1-Y,1-Z; ⁴-1-X,1-Y,-Z