Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

for

Hydrogels with Both Mechanical Strength and Luminescence Anisotropy

Xiao Liu,^a Bin Li,^a Wenjing Wang,^a Zhiqiang Li*^a and Qingqing Xiong*^b

^a Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China. Email: zhiqiangli@hebut.edu.cn
^b Department of Hepatobiliary Cancer, Liver Cancer Research Center for Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Tianjin 300060, P. R. China. Email: xiongqingqing@tmu.edu.cn

Figure S1. Preparative route of Fe/Al₂O₃ platelets.

Figure S2. Zeta potential of pristine Al_2O_3 platelets in deionized water ($\zeta = 16.9$ mV).

Figure S3. EDS spectrum of Fe/Al₂O₃ platelets.

Table S1. Elemental composition of Fe/Al_2O_3 platelets.

Element	Weight % Atomic %	
0	50.38	63.25
Al	49.13	36.58
Fe	0.49	0.18

Figure S4. Optical microscope images of Tb-containing hydrogel in different directions.

Figure S5. (A) Tensile stress-strain and (B) photos (under 254 nm UV light) of Tbcontaining hydrogel with different contents of Fe/Al₂O₃ platelets.

Scheme S1. Schematic illustration of Tb-containing hydrogel (A) original, tensile force was (B) parallel and (C) perpendicular to the oriented Fe/Al₂O₃ platelets.

Scheme S2. Schematic illustration of Tb-containing hydrogel (A) original, compressive force was (B) parallel and (C) perpendicular to the oriented Fe/Al₂O₃ platelets.

Figure S6. Frequency (ω) sweep tests at $\omega = 0.1-100$ rad s⁻¹ and strain (γ) = 1.0% of Tb-containing hydrogel.

Figure S7. Strain sweep tests at $\gamma = 0.1$ -2000% with $\omega = 1.59$ Hz of Tb-containing hydrogel.

Figure S8. Continuous step strain test of Tb-containing hydrogel at $\gamma = 0.1$ and 800% with $\omega = 1.59$ Hz.

Figure S9. Normalized excitation ($\lambda_{mon} = 544$ nm for Tb, 615 nm for Eu) (left) and emission (($\lambda_{ex} = 280$ nm)) (right) luminescence spectra of (A) Tb-containing and (B) Eu-containing hydrogel.

Figure S10. Decay curves of (A) Tb-containing (excited at 280 nm and monitored at 544 nm) and (B) Eu-containing (excited at 280 nm and monitored at 615 nm) hydrogel along different direction.

Table S2. Luminescence quantum efficiency (Φ) and lifetime (τ) of Tb-containing and Eu-containing hydrogel.

Sample		I	random	Ť
Tb-containing hydrogel	τ (ms)	1.33	1.36	1.31
	$\varPhi\left(\% ight)$	4.87	4.91	4.40
Eu-containing hydrogel	τ (ms)	1.41	1.43	1.40
	$\Phi\left(\% ight)$	13.04	12.28	12.55