# ELECTRONIC SUPPLEMENTARY INFORMATION <br> Cagelike Manganesesilsesquioxanes. Features of Synthesis, Unique Structure and Catalytic Activity in Oxidative Amidation 

Grigorii S. Astakhov, $\ddagger$ Victor N. Khrustalev, ${ }^{\ddagger, / /}$ Marina S. Dronova,† Evgenii I. Gutsul,† Alexander A. Korlyukov, ${ }^{\text {t,r }}$ Dmitri Gelman, ${ }^{* \Delta}$ Yan V. Zubavichus,§ Daniil Novichkov, ${ }^{\neq}$Alexander L. Trigub, ${ }^{\$}$ Elena S. Shubina, ${ }^{\dagger}$ Alexey N. Bilyachenko ${ }^{*, \neq}$

${ }^{\dagger}$ A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia<br>扌Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia<br>"Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia<br>yPirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow 117997, Russia<br>${ }^{\Delta}$ Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel<br>§Boreskov Institute of Catalysis SB RAS, prosp. Akad. Lavrentieva, 5, Novosibirsk 630090, Russia<br>*Department of Chemistry, Lomonosov Moscow State University, Leninskie<br>Gory 1, Bld. 3, Moscow 119991, Russian Federation<br>\$National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia

## General information

Commercially available compounds were purchased from Aldrich Chemical Co., Fluka, abcr Chemie Rus LLC, Alfa Aesar, Merck and used without further purification. All reactions, that
required heating, were proceeded in a silicon oil bath. Elemental analyses were carried out with a XRF spectrometer VRA-30 (Laboratory of Microanalysis at the INEOS RAS). IR spectra were recorded on FT-IR Shimadzu IR Prestige21 spectrometers in KBr pellets. UV-Vis spectra (10 mm optical path length) were recorded on a Cary 50 spectrophotometer. NMR measurements were performed at the INEOS RAS (Laboratory for Nuclear Magnetic Resonance) and at the Shared research and educational center of the Peoples' Friendship University of Russia (SREC PFUR, RUDN University). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer and Bruker Avance $300(75 \mathrm{MHz})$. Chemical shifts are reported in ppm and referenced to the solvent peak $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm}, \mathrm{DMSO}-\mathrm{D}_{6}$ at 2.50 ppm$)$. Data are reported as $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{td}=$ triplet of doublets, $\mathrm{qt}=$ quintuplet, sept $=$ septuplet, ddd = doublet of doublets of doublets, $m=$ multiplet; coupling constant in Hz; integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance III HD 100 MHz spectrometer, on Bruker Avance 400 ( 100 MHz ). Chemical shifts are reported in ppm and referenced to the solvent peak $\left(\mathrm{CDCl}_{3}\right.$ at $77.16 \mathrm{ppm}, \mathrm{DMSO}-\mathrm{D}_{6}$ at 39.52 ppm$)$. For column chromatography were used commercially available silica gel 60 from Merck© (0.062-0.200 mm ). TLC plates were purchased from Merck© (silica gel 60, $\mathrm{F}_{254}$ ). TLC analysis were visualized by UV light and/or stained by slightly acidic aqueous solution of $\mathrm{KMnO}_{4}$.

Mn K - edge XANES data were acquired on a laboratory spectrometer of the Department of Radiochemistry, Moscow State University (Moscow, Russia). Spectrometer was based on the design of Rowland circle 0.5 m . was equipped with an X-ray tube with a silver anode with a power of 1.5 kW , silicon drift detector (SDD; Amptek Inc.). and crystal-monochromator.
To monochromatize and focus the beam, $\mathrm{Si}(440)$ SBCA was used to scan the energy range $6520-6720 \mathrm{eV}$, with a step size of 1 eV and constant count time of $5 \mathrm{~s} /$ point in the XANES region. The beam size was chosen to be $5 \mathrm{~mm} \times 5 \mathrm{~mm}$. The data were collected in the transmission mode with sample (I) and without the sample (IO), as well as background measurements using the same scan parameters. Data integration time was 4 h per spectrum.

Synthesis of 1: $1000 \mathrm{mg}(5.04 \mathrm{mmol})$ of $\mathrm{PhSi}(\mathrm{OMe})_{3}$ and $242 \mathrm{mg}(6.05 \mathrm{mmol})$ of NaOH were heated under reflux in 50 ml of mixture ethanol/methanol ( $1: 1 \mathrm{v}: \mathrm{v}$ ) for 2 h . Then $211 \mathrm{mg}(1.68$ mmol ) of $\mathrm{MnCl}_{2}$ was added and resulted brown-colored mixture was stirred without heating 24 h and was filtered from precipitate. Crystallization of the solution gave in $\sim 1$ week a brown crystalline material; several single crystals were used for X-ray diffraction analysis. Analysis of vacuum dried complex $\left[\left(\mathrm{Ph}_{6} \mathrm{Si}_{6} \mathrm{O}_{12}\right)_{2} \mathrm{Mn}_{2} \mathrm{Mn}^{1 I_{2}} \mathrm{Na}_{6} \mathrm{O}_{2}(\mathrm{EtOH})_{9}(\mathrm{MeOH})_{0.5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1.5}\right] \cdot 2 \mathrm{EtOH} 1$ calculated for $\left(\mathrm{Ph}_{6} \mathrm{Si}_{6} \mathrm{O}_{12}\right)_{2} \mathrm{Mn}_{4} \mathrm{Na}_{6} \mathrm{O}_{2}$ : $\mathrm{Si}, 16.55 ; \mathrm{Mn}, 10.79 ; \mathrm{Na}, 6.78$. Found: $\mathrm{Si}, 16.40 ; \mathrm{Mn}$, 10.66; $\mathrm{Na}, 6.69$. Yield: 0.79 g (73 \%).

Synthesis of 2: $1000 \mathrm{mg}(5.04 \mathrm{mmol})$ of $\mathrm{PhSi}(\mathrm{OMe})_{3}$ and $218 \mathrm{mg}(5.46 \mathrm{mmol})$ of NaOH were heated under reflux in 50 ml of mixture ethanol/methanol ( $1: 1 \mathrm{v}: \mathrm{v}$ ) for 2 h . Then $317 \mathrm{mg}(2.52$ mmol ) of $\mathrm{MnCl}_{2}$ and 20 mL of 1,4-dioxane were added to the corresponding solution. The resulted brown-colored mixture was stirred without heating 24 h and was filtered from precipitate. Crystallization of the solution gave in $\sim 1$ week a brown crystalline material; several
single crystals were used for X-ray diffraction analysis. Analysis of vacuum dried complex $\left[\left(\mathrm{Ph}_{6} \mathrm{Si}_{6} \mathrm{O}_{12}\right)_{2} \mathrm{Mn}_{6}{ }_{6} \mathrm{Cl}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left[\mathrm{Na}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)_{0.875}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5.125}\right] \cdot 0.75 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} 2$ - calculated for $\mathrm{NaCl}\left(\mathrm{Ph}_{6} \mathrm{Si}_{6} \mathrm{O}_{12}\right)_{2} \mathrm{Mn}_{6}$ : $\mathrm{Si}, 16.57 ; \mathrm{Mn}, 16.20 ; \mathrm{Na}, 1.13$. Found: $\mathrm{Si}, 16.49 ; \mathrm{Mn}, 16.12 ; \mathrm{Na}, 1.07$. Yield: 0.73 g (60 \%).

Synthesis of 3: 1000 mg ( 5.04 mmol ) of $\mathrm{PhSi}(\mathrm{OMe})_{3}$ and $235 \mathrm{mg}(5.88 \mathrm{mmol})$ of NaOH were heated under reflux in 50 ml of ethanol for 2 h . Then $211 \mathrm{mg}(1.68 \mathrm{mmol})$ of $\mathrm{MnCl}_{2}$ in 20 mL of DMF were added to the corresponding solution. The resulted brown-colored mixture was stirred without heating 24 h and mixed with $76 \mathrm{mg}(0.42 \mathrm{mmol})$ of 1,10-phenanthroline. Mixture was stirred for 3 h , filtered from precipitate and mixed with 15 mL of pyridine. Crystallization of the solution gave in $\sim 5$ days a brown crystalline material; several single crystals were used for Xray diffraction analysis. Analysis of vacuum dried complex $\left[\left(\mathrm{Ph}_{6} \mathrm{Si}_{6} \mathrm{O}_{12}\right)_{2} \mathrm{Mn}^{11} \mathrm{Mn}^{111}{ }_{3} \mathrm{Na}_{2} \mathrm{Cl}(\mathrm{Phen})(\mathrm{Py})_{2}(\mathrm{DMF})_{2.5}\right]$ - $11 / 4 \mathrm{DMF} 3$ - calculated for (phen) $\left(\mathrm{Ph}_{6} \mathrm{Si}_{6} \mathrm{O}_{12}\right)_{2} \mathrm{CIMn}_{5} \mathrm{Na}_{2}$ : $\mathrm{Si}, 15.84 ; \mathrm{Mn}, 10.33, \mathrm{~N}, 1.32 ; \mathrm{Na}, 2.16$. Found: $\mathrm{Si}, 15.79 ; \mathrm{Mn}$, 10.26, N, 1.25; Na, 2.09. Yield: 0.73 g ( $60 \%$ ).

Synthesis of 4: $1000 \mathrm{mg}(5.04 \mathrm{mmol})$ of $\mathrm{PhSi}(\mathrm{OMe})_{3}$ and $202 \mathrm{mg}(5.04 \mathrm{mmol})$ of NaOH were heated under reflux in 50 ml of ethanol for 2 h . Then $317 \mathrm{mg}(2.52 \mathrm{mmol})$ of $\mathrm{MnCl}_{2}$ in 20 mL of DMF were added to the corresponding solution. The resulted brown-colored mixture was stirred without heating 24 h and mixed with $182 \mathrm{mg}(1.01 \mathrm{mmol})$ of 1,10-phenanthroline. Mixture was stirred for 3 h and filtered from precipitate. Crystallization of the solution gave in $\sim 1$ week a brown crystalline material; several single crystals were used for X-ray diffraction analysis. Analysis of vacuum dried complex $\left[\left(\mathrm{Ph}_{5} \mathrm{Si}_{5} \mathrm{O}_{10}\right)_{2} \mathrm{Mn}^{1{ }_{3}} \mathrm{Mn}^{\left.1 \mathrm{II}_{2} \mathrm{Cl}(\mathrm{OH})(\mathrm{Phen})_{2}(\mathrm{DMF})_{2}\right] \cdot 21 / 3 \mathrm{EtOH} 4}\right.$ - calculated for (phen $)_{2}\left[\left(\mathrm{Ph}_{5} \mathrm{Si}_{5} \mathrm{O}_{10}\right)_{5}\right]_{2} \mathrm{Cl}(\mathrm{OH}) \mathrm{Mn}_{5}$ : $\mathrm{Si}, 13.64 ; \mathrm{Mn}, 13.34 ; \mathrm{N}, 2.72$. Found: Si , 13.60; Mn, 13.28; N, 2.63. Yield: 0.53 g (48 \%).

Synthesis of 5: $1000 \mathrm{mg}(5.04 \mathrm{mmol})$ of $\mathrm{PhSi}(\mathrm{OMe})_{3}$ and $202 \mathrm{mg}(5.04 \mathrm{mmol})$ of NaOH were heated under reflux in 50 ml of ethanol for 2 h . Then $317 \mathrm{mg}(2.52 \mathrm{mmol})$ of $\mathrm{MnCl}_{2}$ in 20 mL of DMF were added to the corresponding solution. The resulted brown-colored mixture was stirred without heating 24 h and mixed with $454 \mathrm{mg}(2.52 \mathrm{mmol})$ of 1,10-phenanthroline Mixture was stirred for 3 h and filtered from precipitate. Crystallization of the solution gave in $\sim 5$ days a brown crystalline material; several single crystals were used for X-ray diffraction analysis. Analysis of vacuum dried complex $\left[\left(\mathrm{Ph}_{4} \mathrm{Si}_{4} \mathrm{O}_{8}\right)_{2} \mathrm{Mn}_{2}{ }_{2} \mathrm{Mn}^{1{ }^{\prime \prime}}{ }_{2}(\mathrm{OH})_{2}(\mathrm{Phen})_{4}\right] \cdot 41 / 2 \mathrm{DMF} 5$ - calculated for (phen) $)_{4}\left[\left(\mathrm{PhSiO}_{2}\right)_{4}\right]_{2}(\mathrm{OH})_{2} \mathrm{Mn}_{4} \mathrm{Si}, 10.84 ; \mathrm{Mn}, 10.61 ; \mathrm{N}, 5.41$. Found: $\mathrm{Si}, 10.76 ; \mathrm{Mn}, 10.53 ; \mathrm{N}$, 5.34. Yield: 0.52 g (39 \%).


Synthesis of (4-nitrophenyl)methanol, (4-methylphenyl)methanol and (E)-3-phenylprop-2-en-1-ol. To a solution of the corresponding aldehyde ( 1.0 equiv.) in methanol ( 0.4 M ) was added sodium borohydride ( 2.5 equiv.) at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t. until complete by TLC analysis. The mixture was concentrated under reduced pressure before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and further under vacuum to afford the product without further purification ${ }^{\text {s1,s2 }} \quad$ [(4-nitrophenyl)methanol, yield 85\%; (4methylphenyl)methanol, yield 90\%; (E)-3-phenylprop-2-en-1-ol, yield 82\%).

Procedure A for the synthesis of amides from alcohols: In a sealed vial ( 10 mL ) were added amine hydrochloride ( 0.5 mmol ), $\mathrm{CaCO}_{3}(\geq 99 \%, 50.0 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), manganese catalyst 1 ( 13 mg ), dried $\mathrm{MeCN}(1 \mathrm{~mL})$, alcohol ( 1.0 mmol ), and TBHP (5.0-6.0 M in decane, $225 \mu \mathrm{~L}, 1.25$ mmol ) respectively. The sealed vial with reaction mixture was purged by argon and was stirred at $80^{\circ} \mathrm{C}$ for 2 h . Thereafter a new portion of TBHP (5.0-6.0 M in decane, $225 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$ ) was added to the reaction mixture, purged by argon and the reaction was carried out for 22 h at $80^{\circ} \mathrm{C}$. Afterwards all volatiles was evaporated under reduced pressure and the crude product was purified by flash column chromatography on silica gel (gradients of cyclohexane/AcOEt) to afford the corresponding amides.

Procedure B for the synthesis of amides from aldehydes: In a sealed vial ( 10 mL ) were added amine hydrochloride ( 1.1 mmol ), $\mathrm{CaCO}_{3}(\geq 99 \%, 120.0 \mathrm{mg}, 1.2 \mathrm{mmol})$, manganese catalyst $1(13 \mathrm{mg})$, dried $\mathrm{MeCN}(0.2 \mathrm{~mL})$, aromatic aldehyde ( 1.0 mmol ), and TBHP ( $5.0-6.0 \mathrm{M}$ in decane, $220 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$ ) respectively. The sealed vial with reaction mixture was purged by argon and was stirred at $45^{\circ} \mathrm{C}$ for 8 h . Afterwards all volatiles was evaporated under reduced pressure and the crude product was purified by flash column chromatography on silica gel (gradients of cyclohexane/AcOEt) to afford the corresponding amides.

## NMR data of synthesized amides

## N-cyclohexylbenzamide (8)



Following the procedure A, the main product was obtained as colorless solid ( $85 \mathrm{mg}, 84 \%$ yield; eluent: EtOAc/hexane = 1:5); Following the procedure $\mathbf{B}$, the main product was obtained as
colorless solid (128 mg, 63\%); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.75$ (d, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{o}-\mathrm{H}-\mathrm{Ar}$ ), 7.50-7.47 (m, 1H, p-H-Ar). 7.44-7.40 (t, J = 7.2 Hz, 2H, m-H-Ar), 5.97 (br, 1H, -CO-NH-), 4.033.93 (m, 1H, -CO-NH-CH(R'R")), 2.05-2.02 (m, 2H, aliph.), 1.78-1.73 (m, 2H, aliph.), 1.67-1.63 ( $\mathrm{m}, 1 \mathrm{H}$, aliph.), 1.45-1.38 (m, 2H, aliph.), 1.25-1.19 (m, 3H, aliph.) (Fig. S1); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 166.8,135.2,131.3,128.6,126.9,48.8,33.3,25.7,25.0$ (Fig. S2).

## N-benzylbenzamide (9)



Following the procedure A, the main product was obtained as colorless solid ( $73 \mathrm{mg}, 69 \%$ yield; eluent: EtOAc/hexane = 1:2); Following the procedure $\mathbf{B}$, the main product was obtained as colorless solid ( $137 \mathrm{mg}, 65 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.79$ ( $\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{o}-\mathrm{H}-\mathrm{Ar}$ ), 7.53-7.31 (m, 8H, H-Ar), 6.39 (br, 1H, -CO-NH-), 4.67 (d, J = 5.1 Hz, 2H, $-\mathrm{CH}_{2} \underline{2}^{-} \mathrm{C}_{6} \mathrm{H}_{5}$ ) (Fig. S3); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 167.6,138.3,134.4,131.6,128.8,128.6,127.9,127.6,127.1$, 44.2 (Fig. S4).

## $N, N$-dibenzylbenzamide (10)



Following the procedure A, the main product was obtained as colorless solid (116 mg, 77\% yield; eluent: EtOAc/hexane = 1:4); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.50$ (s, $2 \mathrm{H}, o-\mathrm{H}-\mathrm{Ar}$ ), 7.397.31 (m, 11H, H-Ar), 7.15 (s, 2H, H-Ar), 4.71 (s, 2H, $-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ ), 4.41 (s, 2H, $-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ ) (Fig. S5); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.4,136.2,129.8,129.0,128.8,128.6,128.5,127.8$, 127.6, 127.1, 126.8, 51.6, 47.0 (Fig. S6).

## N-cyclohexyl-4-nitrobenzamide (11)



Following the procedure A, the main product was obtained as slightly yellowish solid ( 114 mg , $92 \%$ yield; eluent: EtOAc/hexane = 1:5); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta 8.29$ (d, $J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}, o-\mathrm{H}-\mathrm{Ar}), 8.07$ (d, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{H}-\mathrm{Ar}$ ), 3.80-3.73 (m, 1H, -CO-NH-), 1.84-1.80 (m, 2H,
aliph.), 1.75-1.71 (m, 2H, aliph.), 1.63-1.62 (m, 1H, aliph.), 1.33-1.27 (m, 3H, aliph.), 1.16-1.11 (m, 1H, aliph.) (Fig. S7); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\boldsymbol{d}_{6}$ ): $\delta$ 163.8, 148.9, 140.6, 128.9, 123.4, 48.8, 32.3, 25.3, 24.9 (Fig. S8).

N,N-dibenzyl-4-methylbenzamide (12)


Following the procedure A, the main product was obtained as colorless solid ( $123 \mathrm{mg}, 78 \%$ yield; eluent: EtOAc/hexane = 1:4); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.42-7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, 7.19-7.17 (m, 4H, H-Ar), 4.69 (s, 2H, $-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ ), 4.42 (s, $2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ ), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Fig. S9); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 172.5, 139.9, 137.1, 136.6, 133.2, 129.7, 129.2, 128.8, 128.6, 128.5, 127.6, 127.0, 126.9, 126.8, 51.6, 46.9, 21.4 (Fig. S10).

## 4-chloro-N-(2-methylpropyl)benzamide (13)



Following the procedure $\mathbf{A}$, the main product was obtained as colorless solid ( $94 \mathrm{mg}, 89 \%$ yield; eluent: EtOAc/hexane = 1:2); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.70$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{H}-\mathrm{Ar}$ ), 7.39 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{H}-\mathrm{Ar}$ ), 6.20 (br, $1 \mathrm{H},-\mathrm{CO}-\mathrm{NH}-$ ), 3.28 (t, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.94-1.84\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ (Fig. S11); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 166.8, 137.6, 133.3, 128.9, 128.4, 47.6, 28.7, 20.3 (Fig. S12).

## (-)-N-[(1S)-1-phenylethyl]benzamide (14)



Following the procedure $\mathbf{A}$, the main product was obtained as colorless solid ( $83 \mathrm{mg}, 75 \%$ yield; eluent: EtOAc/hexane = 1:4); ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta 7.77$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{H}-\mathrm{Ar}$ ), 7.51-7.47 (m, 1H, H-Ar), 7.44-7.34 (m, 6H, H-Ar), 7.29 (d, J = 7.0 Hz, 1H, H-Ar), 6.36 (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CO}-\mathrm{NH}-), 5.34\left(\mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-\mathrm{CH}(\mathrm{Ph})-\mathrm{CH}_{3}\right), 1.61\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Fig. S13); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 166.7, 143.6, 131.5, 128.8, 128.6, 127.5, 127.1, 126.3, 49.3, 21.8 (Fig. S14).
(S)-ethyl-N-(4-nitrobenzoyl)-phenylalaniate (15)


Following the procedure A, the main product was obtained as slightly yellowish solid ( 99 mg , $58 \%$ yield; eluent: EtOAc/hexane = 1:7); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.28(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, o-H-Ar), 7.87 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{H}-\mathrm{Ar}$ ), 7.33-7.28 (m, 3H, H-Ar), 7.14-7.11 (m, 2H, H-Ar), 6.65 (d, J = 6.9 Hz 1H, -CO-NH-), 5.05 (td, J = 7.4, 5.5 Hz, 1H, -NH-CH(CO2 $\mathrm{CO}_{2}$ )-Bn), 4.25 (q, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 3.29 (ddd, $J=19.6,13.7,5.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ ), $1.30(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ) (Fig. S15); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 171.5,165.0,149.8,139.5$, 135.7, 129.4, 128.7, 128.3, 127.4, 123.9, 62.0, 53.9, 37.8, 14.2 (Fig. S16).

## Morpholin-4-yl(phenyl)methanone (16)



Following the procedure $\mathbf{A}$, the main product was obtained as colorless solid ( $60 \mathrm{mg}, 63 \%$ yield; eluent: EtOAc/hexane = 1:2); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta 7.43-7.39$ (m, 5H, H-Ar), 3.76 (br, 4H, aliph.), 3.64 (br, 2H, aliph.), 3.45 (br, 2H, aliph.) (Fig. S17); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 170.4, 135.3, 129.9, 128.6, 127.1, 66.9, 48.3, 42.5 (Fig. S18).

## N-cyclohexyl-4-methylbenzamide (17)



Following the procedure $\mathbf{A}$, the main product was obtained as colorless solid ( $68 \mathrm{mg}, 63 \%$ yield; eluent: EtOAc/hexane = 1:5); Following the procedure $\mathbf{B}$, the main product was obtained as colorless solid ( $112 \mathrm{mg}, 52 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.65$ (d, J=7.6 Hz, 2H, o-H-Ar), 7.22 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{H}-\mathrm{Ar}$ ), 5.95 (br, 1H, -CO-NH-), 4.01-3.94 (m, 1H, -CO-NH-CH(R'R")), 2.93 (s, 3H, $\mathrm{CH}_{3}$ ), 2.04-2.01 (m, 2H, aliph.), 1.76-1.73 (m, 2H, aliph.), 1.66-1.63 (m, 1H, aliph.), 1.47-1.38 (m, 2H, aliph.), 1.26-1.18 (m, 3H, aliph.) (Fig. S19); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 166.8, 141.7, 132.2, 129.2, 127.0, 48.7, 33.3, 25.7, 25.0, 21.5 (Fig. S20).

## (2E)-N,N-dibenzyl-3-phenylprop-2-enamide (18)



Following the procedure A, the main product was obtained as colorless solid ( $50 \mathrm{mg}, 31 \%$ yield; eluent: EtOAc/hexane = 1:5); ${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}$, CDCl $_{3}$ ): $\delta 7.86(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, \mathbf{1 H}, 3-\mathrm{H})$, 7.47-7.46 (m, 2H, H-Ar), $7.40-7.29$ (m, 11H, H-Ar), 7.23 (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$ ), 6.91 (d, J $=15.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.72\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 4.61$ (s, 2H, $-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ ). (Fig. S21); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 167.3,143.9,137.4,136.8,135.3,129.8,129.1,128.9,128.7,128.5$, 128.0, 127.8, 127.5, 126.7, 117.31, 50.1, $48.9 \quad$ (Fig.S22).

Table S1. Variation of reaction conditions for amidation of benzylic alcohol (7)


| Entry | Catalyst loading (mol\% of Mn) | t, hours | Oxidant | Solvent, 1 mL | 8, isolated yield, \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. |  | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 11 |
| 2. | 2 (5) | 4 | TBHP (70\% in water), 5 eq. | MeCN | 25 |
| 3. | 2 (1) | 24 | TBHP ( 5.5 M in decane), 5 eq. | MeCN | 56 |
| 4. | 1 (5) | 24 | MCPBA, 4 eq. | MeCN, 1.5 mL | 26 |
| 5. | 1 12.5) | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 59 |
| 6. | $\mathrm{Mn}(\mathrm{OAC})_{2}{ }^{*} 4 \mathrm{H}_{2} \mathrm{O}(5)$ | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 38 |
| 7. | $\mathrm{MnCl}_{2}$ anhydrous (5) | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 43 |
| 8. | $\begin{aligned} & \text { MOF-Manganese (II) } \\ & \text { Terephtalate (5; 7.5\% } \\ & \text { wt) } \end{aligned}$ | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 49 |
| 9. | $\operatorname{Mn}(a c a c)_{2}(5)$ <br> 1,10-Phenanthroline ( $6 \mathrm{~mol} \%$ ) | 24 | TBHP ( 5.5 M in decane), 5 eq. | MeCN | 56 |
| 10. | $\mathrm{Mn}(\mathrm{acac})_{2}$ (5) | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 42 |
| 11. | $\mathrm{Mn}(\mathrm{acac}){ }_{2}(15)$ | 24 | TBHP ( 5.5 M in decane), 5 eq . | MeCN | 53 |
| 12. | $\begin{aligned} & \mathrm{Mn}(\mathrm{acac})_{2}(15) \\ & 1,10-\text { Phenanthroline } \\ & (18 \mathrm{~mol} \%) \end{aligned}$ | 24 | TBHP (5.5M in decane), 5 eq. | MeCN | 42 |

${ }^{1} \mathrm{H}$ of $\mathbf{8}$ (Fig. S1)

${ }^{13} \mathrm{C}$ of 8 (Fig. S2)

${ }^{1} \mathrm{H}$ of 9 (Fig. S3)

${ }^{13} \mathrm{C}$ of 9 (Fig. S4)

${ }^{1} \mathrm{H}$ of 10 (Fig. S5)

${ }^{13} \mathrm{C}$ of 10 (Fig. S6)


${ }^{1} \mathrm{H}$ of 11 (Fig. S7)

${ }^{13} \mathrm{C}$ of 11 (Fig. S8)


| 230 | 210 | 190 | 170 | 150 | 130 | $\stackrel{110}{\mathrm{f} 1(\mathrm{ppm})}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} \mathrm{H}$ of 12 (Fig. S9)

${ }^{13} \mathrm{C}$ of 12 (Fig. S10)

${ }^{1} \mathrm{H}$ of 13 (Fig. S11)

${ }^{13} \mathrm{C}$ of 13 (Fig. S12)

${ }^{1} \mathrm{H}$ of 14 (Fig. S13)

${ }^{13} \mathrm{C}$ of 14 (Fig. S14)

${ }^{1} \mathrm{H}$ of 15 (Fig. S15)

${ }^{13} \mathrm{C}$ of 15 (Fig. S16)



## ${ }^{1} \mathrm{H}$ of 16 (Fig. S17)


${ }^{13} \mathrm{C}$ of 16 (Fig. S18)

${ }^{1} \mathrm{H}$ of 17 (Fig. S19)

${ }^{13} \mathrm{C}$ of 17 (Fig. S20)

${ }^{1} \mathrm{H}$ of 18 (Fig. S21)

${ }^{13} \mathrm{C}$ of 18 (Fig. S22)


## IR-spectra of Mn-silsesquioxanes (pellets in KBr)

1 (Fig. S23)


2 (Fig. S24)


## 3 (Fig. S25)




5 (Fig. S27)

$\pi-\pi$ stacking interactions of phenanthrolines' ligands in crystal packing of 4
(Figure S28)

$\pi-\pi$ stacking interactions of phenanthrolines' ligands in crystal packing of 5
(Figure S29)


## XANES spectra of Mn-silsesquioxanes

Red curve - 2; blue curve - 3; green curve - 5 (Figure S30).


Red curve - 2; blue curve - 3; green curve - 5 (Figure S31).


UV-vis spectra of 1-5
(Figure S32)


Experimental UV-vis spectra of 1-5 in PhCN. Deep blue: 1; Blue: 2; Red: 3; Purple: 4; Green: 5.

## X-ray crystal structure determination

X-ray diffraction data for $\mathbf{1 , 2} \mathbf{2}$ and $\mathbf{5}$ were collected on three-circle Bruker APEX-II CCD (for $\mathbf{1}$ and $\mathbf{2}$ ) and Bruker D8 QUEST PHOTONIII CCD (for 5) diffractometers (graphite monochromator, $\varphi$ and $\omega$ scan mode) and corrected for absorption using the SADABS program [S3]. The data were indexed and integrated using the SAINT program [S4]. X-ray diffraction data for 3 and $\mathbf{4}$ were collected at the 'Belok' beamline of the National Research Center 'Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 720 images were collected with an oscillation range of $1.0^{\circ}$ in the $\varphi$ scanning mode using two different orientations for each crystal, and corrected for absorption using the Scala program [S5]. The data were indexed, integrated and scaled using the utility iMOSFLM in CCP4 program [S6]. For details, see Table S2. The structures were solved by intrinsic phasing modification of direct methods [S7] and refined by a full-matrix least-squares technique on $F^{2}$ with anisotropic displacement parameters for all non-hydrogen atoms. In the case of 4, all attempts to model and refine positions of the ethanol solvate molecules were unsuccessful. Therefore, their contribution to the total scattering pattern was removed by use of the utility SQUEEZE in PLATON06 [S8]. The hydrogen atoms of the OH-groups and the water molecules were localized in the difference-Fourier maps and included in the refinement within the riding model with fixed isotropic displacement parameters. The other hydrogen atoms were placed in calculated positions and refined within riding model with fixed isotropic displacement parameters $\left[U_{\text {iso }}(H)=1.5 U_{\text {eq }}(C)\right.$ for the $\mathrm{CH}_{3}$-groups and $1.2 U_{\text {eq }}(\mathrm{C})$ for the other groups]. All calculations were carried out using the SHELXTL program suite [S9].

Crystallographic data for 1-5 have been deposited with the Cambridge Crystallographic Data Center, CCDC 2168292-2168296. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).

Table S2. Crystal data and structure refinement for complexes 1-5.

| Identification code | $1 \cdot 2 \mathrm{EtOH}$ | 2•3/4dioxane | $3 \cdot 11 / 4$ DMF | 4-21/3EtOH | 5-41/2DMF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{94.5} \mathrm{H}_{131} \mathrm{Mn}_{4} \mathrm{Na}_{6} \mathrm{O}_{39} \mathrm{Si}_{12}$ | $\mathrm{C}_{90.5} \mathrm{H}_{113.25} \mathrm{ClMn}_{6} \mathrm{NaO}_{41.375} \mathrm{Si}_{12}$ | $\mathrm{C}_{105.25} \mathrm{H}_{104.25} \mathrm{ClMn}_{4} \mathrm{Na}_{2} \mathrm{~N}_{7.75} \mathrm{O}_{27.75} \mathrm{Si}_{12}$ | $\mathrm{C}_{90} \mathrm{H}_{81} \mathrm{ClMn}_{5} \mathrm{~N}_{6} \mathrm{O}_{23} \mathrm{Si}_{10}$ | $\mathrm{C}_{109.5} \mathrm{H}_{105.5} \mathrm{Mn}_{4} \mathrm{~N}_{12.5} \mathrm{O}_{22.5} \mathrm{Si}_{8}$ |
| Formula weight | 2585.77 | 2588.21 | 2559.98 | 2205.66 | 2401.05 |
| Temperature, K | 100(2) | 296(2) | 100(2) | 100(2) | 100(2) |
| Crystal size, mm | $0.27 \times 0.23 \times 0.21$ | $0.35 \times 0.30 \times 0.25$ | $0.15 \times 0.10 \times 0.01$ | $0.15 \times 0.13 \times 0.08$ | $0.21 \times 0.13 \times 0.11$ |
| Wavelength, $\AA$ | 0.71073 | 1.54178 | Synchrotron ( $\lambda=0.96600$ ) | Synchrotron ( $\lambda=0.96600$ ) | 0.71073 |
| Crystal system | Monoclinic | Orthorhombic | Orthorhombic | Monoclinic | Triclinic |
| Space group | $P 2_{1} / \mathrm{n}$ | $P 2{ }_{1}{ }_{1} 2_{1}$ | Pbca | $P 2_{1} / \mathrm{n}$ | $P-1$ |
| a, $\AA$ | 18.1516(9) | 17.1275(8) | 19.612(4) | 19.940(4) | 17.4280(4) |
| b, A | 17.2212(8) | 26.9431(12) | 30.698(6) | 18.944(4) | 18.2428(4) |
| c, A | 19.6391(10) | 32.7551(14) | 40.431(8) | 32.358(7) | 20.8324(5) |
| $\alpha$, deg. | 90 | 90 | 90 | 90 | 75.8116(7) |
| $\beta$, deg. | 103.8220(10) | 90 | 90 | 102.70(3) | 67.7941(6) |
| $\gamma$, deg. | 90 | 90 | 90 | 90 | 79.8932(7) |
| $V, \AA^{3}$ | 5961.3(5) | 15115.4(12) | 24342(8) | 11924(5) | 5919.7(2) |
| Z | 2 | 4 | 8 | 4 | 2 |
| Density (calc.), mg/m ${ }^{3}$ | 1.441 | 1.137 | 1.397 | 1.229 | 1.347 |
| $\mu, \mathrm{mm}^{-1}$ | 0.635 | 5.595 | 0.841 | 1.619 | 0.570 |
| $F(000)$ | 2688.0 | 5333.0 | 10552.0 | 4516.0 | 2484.0 |
| Theta range, deg. | 1.751-30.964 | 2.698-67.968 | 1.585-31.034 | 3.251-30.409 | 2.236-27.549 |
| Index ranges | $\begin{aligned} & -26 \leq \mathrm{h} \leq 25, \\ & -24 \leq \mathrm{k} \leq 24, \\ & -28 \leq \mathrm{I} \leq 28 \end{aligned}$ | $\begin{aligned} & -19 \leq h \leq 20, \\ & -31 \leq k \leq 31, \\ & -38 \leq 1 \leq 38 \end{aligned}$ | $\begin{aligned} & -25 \leq h \leq 24, \\ & -39 \leq k \leq 39, \\ & -52 \leq 1 \leq 52 \end{aligned}$ | $\begin{aligned} & -20 \leq h \leq 20, \\ & -17 \leq k \leq 19, \\ & -33 \leq 1 \leq 33 \end{aligned}$ | $\begin{aligned} & -22 \leq h \leq 22, \\ & -23 \leq k \leq 23, \\ & -27 \leq 1 \leq 27 \end{aligned}$ |
| Reflections collected | 79185 | 185704 | 222737 | 61320 | 73374 |
| Independent | 18539 ( $\left.R_{\text {int }}=0.0570\right)$ | 26336 ( $\left.R_{\text {int }}=0.0940\right)$ | $27772\left(R_{\text {int }}=0.0527\right)$ | 13768 ( $R_{\text {int }}=0.0924$ ) | $27062\left(R_{\text {int }}=0.0582\right)$ |
| Reflections observed | 12318 | 18467 | 22061 | 8555 | 17949 |
| Restraints / | $127 / 670$ | 589 / 1133 | 165 / 1125 | $228 / 1131$ | 132 / 1345 |
| $R_{1} / \mathrm{w} R_{2}(I>2 \sigma(I))$ | 0.0666 / 0.1671 | 0.1469 / 0.2969 | 0.0927 / 0.2077 | 0.0932 / 0.1974 | 0.0880 / 0.2025 |
| $R_{1} / \mathrm{w} R_{2}$ (all data) | 0.1111 / 0.2061 | 0.1723 / 0.3104 | 0.1104 / 0.2198 | 0.1404 / 0.2252 | 0.1296 / 0.2283 |
| Goodness-of-fit on $F^{2}$ | 1.020 | 1.030 | 1.027 | 1.011 | 1.032 |
| $T_{\text {min }} / T_{\text {max }}$ | $0.798 / 0.846$ | $0.123 / 0.234$ | 0.870 / 0.980 | $0.780 / 0.870$ | 0.877 / 0.931 |
| $\Delta \rho_{\text {max }} / \Delta \rho_{\text {min }}, \mathrm{e} \cdot \AA^{-3}$ | 2.080 /-1.475 | 1.140 /-1.138 | 2.30 /-1.41 | 0.678 / -0.494 | 2.674 /-1.569 |

## References:

[S1] Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem. Int. Ed. 2014, 53 (50), 13835-13839; https://doi.org/10.1002/anie.201406088.
[S2] Estopiñá-Durán, S.; Donnelly, L. J.; Mclean, E. B.; Hockin, B. M.; Slawin, A. M. Z.; Taylor, J. E. Chem. - Eur. J. 2019, 25 (15), 39503956; https://doi.org/10.1002/chem.201806057.
[S3] Sheldrick, G. M. SADABS, v. 2.03, Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS Inc., Madison, WI, 2003.
[S4] Bruker, SAINT, v. 8.27A, Bruker AXS Inc., Madison, WI, 2012.
[S5] Evans, P. R. Acta Cryst. 2006, D62, 72-82.
[S6] Battye, T. G. G.; Kontogiannis, L.; Johnson, O.; Powell, H. R.; Leslie, A. G. W. Acta Cryst. 2011, D67, 271-281.
[S7] Sheldrick, G.M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3-8.
[S8] Spek, A. L. PLATON, A Multipurpose Crystallographic Tool, Utrecht University, the Netherlands, 2006.
[S9] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

