Supporting Information for:

Simultaneous Enhancement of Near Infrared Luminescence and Stability of Cs₂AgInCl₆:Cr³⁺ Double Perovskites Single Crystal

Enabled by Yb³⁺ Dopant

Daiwen Chen^a, Xinguo Zhang^b, Jianwu Wei, Liya Zhou^a, Peican Chen^a, Qi Pang^{a*}

and Jin Zhong Zhang^{c*}

^a School of Chemistry and Chemical Engineering, University Guangxi /Key

Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning

530004, Guangxi, Peoples R China

^bSouthern Med Univ, Sch Pharmaceut Sci, Guangzhou 510515, Peoples R China

^c Department of Chemistry and Biochemistry, University of California, Santa Cruz,

California 95064, United States

Corresponding authors: pqigx@163.com; zhang@ucsc.edu

Experimental

1. Materials

The following chemicals were used as purchased without further purification: CsCl (99%, Aladdin), AgCl (99.5, Macklin), InCl₃ (99.99%, Aladdin), CrCl₃ • 6H₂O (analytical pure, Aladdin), YbCl₃ • 6H₂O (analytical pure, Aladdin), ErCl₃ • 6H₂O (analytical pure, Aladdin), HoCl₃ • 6H₂O (analytical pure, Aladdin), hydrochloric acid (HCl, analytical pure, Chengdu Kelong Chemical Reagent Factory, China).

2. Synthesis of CAIC DPSCs

To grow pristine CAIC crystals, solid CsCl (0.337 mg, 2.00 mmol), $InCl_3$ (0.221 mg, 1.00 mmol) and AgCl (0.143 mg, 1.00 mmol) were dissolved in 15 ml of 10 M HCl and then transfer into a 50 cm³ Teflon autoclave. The solution was heated at 150 °C for 12 h and then slowly and steadily cooled to 60 °C with a speed of 3 °C per hour and kept a constant temperature of 60 °C in a Teflon-lined stainless steel autoclave. The as-prepared crystals were filtered out and washed with isopropanol and dried in a furnace 3 h at 60 °C.

3. Synthesis of CAIC: x%Cr³⁺ (x=10, 20, 30, 40, and 50)

The synthesis method used is similar to the CAIC DPSCs except for adding different amount of $CrCl_3 \cdot 6H_2O$ with molar ratio of Cr/(Cr + In) as 0.1, 0.2, 0.3, 0.4, 0.5. The corresponding samples are noted as CAIC: x% Cr^{3+} (x=10, 20, 30, 40, and 50)

4. Synthesis of CAIC: 30%Cr³⁺, y% Yb³⁺ (y=0, 1, 2, 3)

The synthesis method is similar to that for CAIC: Cr^{3+} DPSCs except with different amount of YbCl₃ • 6H₂O with the molar ration of Yb/(Yb+ Cr + In) as 0.01, 0.02, 0.03 and the amount of $CrCl_3 \cdot 6H_2O$ was fixed as the molar ratio of Cr/(Cr + In) of 0.3. The corresponding samples are noted as CAIC:30% Cr^{3+} , $y\%Yb^{3+}$ (y= 0, 1, 2, 3)

5. LED fabrication and evaluation

NIR pc-LEDs were fabricated by combining as-synthesized NIR-emitting phosphor CAIC:Cr³⁺,Yb³⁺ with InGaN UV chips (λ_{em} =365 nm). The phosphor was mixed with epoxy resin thoroughly in a weight ratio of 1:1, then was coated on the surface of the chip to make NIR pc-LED. The Electroluminescence (EL) and NIR output power were measured by Spectrum TEQ-EL series electroluminescence quantum efficiency measurement system of Ocean Optics.

6. Characterization

The powders used were all obtained by grinding in a mortar. DX-2700A measured the X-ray diffraction patterns with the Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was measured by Escalab250Xi X-ray photoelectron spectrometer of Thermo Fisher Scientific Company in the United States. The morphology and size of the DPSCs were characterized by Scanning Electron Microscope (SEM). The elemental composition and distribution of the materials was observed by energydispersive X-ray spectroscopy (EDS) coupled to SEM. UV-vis diffuse reflectance spectra of the perovskite powder were obtained at room temperature using the Techcomp UV2600 variable slit UV-vis spectrophotometer. PL, PLE, TRPL, and Temperature-dependent PL were measured by FLS1000 fluorescence spectrometer of Edinburgh instruments. PL and PLE were measured with the xenon lamp (Xe900) as excitation source, TRPL spectrum was recorded with microsecond lamp as an excitation source. PLQY was measured by integrating sphere and Hamamatsu quantum yield measurement system.

Figure S1. SEM image of CAIC:30%Cr³⁺ and CAIC:30%Cr³⁺, 3%Yb³⁺

Figure S2. XRD patterns of CAIC: $x\%Cr^{3+}(x = 0, 10, 20, 30, 40, 50)$ DPSCs.

Figure S3. XRD patterns of CAIC:30%Cr, y%Yb (y = 0, 1, 2, 3) DPSCs.

Figure S4. SEM image and EDS spectra of CAIC:30%Cr with the corresponding atomic maps.

Figure S5. PLE spectra of CAIC:30%Cr³⁺,y%Yb³⁺ (y=0, 1, 2, 3).

Figure S6. Absolute photoluminescence quantum yield (PLQY) of CAIC:30%Cr³⁺, 3%Yb³⁺ DPSCs.

Figure S7. PL spectra of CAIC:30%Cr³⁺,y%Yb³⁺ (y=0, 1, 2, 3). The incorporated samples were tested at λ_{ex} = 365 nm.

Figure S8. Excitation-wavelength-dependent (320-600 nm) PL spectra of CAIC:30%Cr³⁺,3%Yb³⁺.

Figure S9. PL spectra of CAIC:30%Cr³⁺,3%Yb³⁺ and CAIC:Yb³⁺. The emission spectrum of CAIC:Yb³⁺ in the figure is magnified tenfold.

Figure S10. PL curves measured from CAIC:Cr³⁺ and CAIC:Ln³⁺ samples. The incorporated samples were tested at λ_{ex} = 365 nm.

Figure S11. TRPL decay curves of CAIC:Cr³⁺ doped with or without Ln³⁺ ions.

Figure S12. (a) The PL spectra of CAIC:Yb³⁺, CAIC:Cr³⁺ and CAIC:Cr³⁺,Yb³⁺ at 450-800nm. (b) The spectral overlapping between the PL spectrum of CAIC:Yb³⁺ and the excitation band of CAIC:Cr³⁺.

Figure S13. The photophysical process in Cr³⁺-incorporated CAIC DPSCs.

Figure S14. Temperature-dependent PL spectra at 450-750 nm at low temperature of CAIC:Cr³⁺

Figure S15. $Ln(I_0/I_T-1)$ versus 1/T plot of the temperature dependent spectra.

Parameter	Cs ₂ AgIn _{0.7} Cr _{0.3} Cl ₆	Cs ₂ AgInCl ₆
Formula weight	628.36	701.21
Crystal system	cubic	cubic
Space group	Fm-3m	Fm-3m
Unit-cell dimension	a/Å=10.4523	a/Å=10.4609
	b/Å=10.4523	b/Å=10.4609
	c/Å=10.4523	c/Å=10.4609
	α/°=90	α/°=90
	β/°=90	β/°=90
	γ/°=90	γ/°=90
Volume/Å3	1141.9	1144.7
Z	4	2
$ ho_{calc} g/cm^3$	3.969	4.069
Crystal size/mm ³	0.12 imes 0.1 imes 0.1	0.2 imes 0.2 imes 0.2
Radiation	$GaK\alpha (\lambda = 1.34139)$	$GaK\alpha (\lambda = 1.34139)$
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0426, wR_2 = 0.0970$	$R_1 = 0.0255, wR_2 = 1.178$
Final R indexes [all data]	$R_1 = 0.0438, wR_2 = 0.0976$	$R_1 = 0.0255, wR_2 = 0.0513$
Largest diff. peak/hole / e Å-3	1.96/-1.27	2.18/-0.74

Table S1 Details of X-ray crystallographic parameters of single crystals.

	_		_	
Atom	X	У	Z	U
Cs1	0.75	0.25	0.25	0.0396
Agl	0.5	0.5	0.5	0.0273
In1	1	0.5	0.5	0.0276
Cr1	1	0.5	0.5	0.0276
Cl1	0.7402(5)	0.5	0.5	0.0424

Table S2. Details of atoms occupation situation of $Cs_2AgIn_{0.7}Cr_{0.3}Cl_6$ single crystal.

Table S3. Bond length of Cs₂AgIn_{0.7}Cr_{0.3}Cl₆ single crystal.

Atom	Atom	Length/ Å	Atom	Atom	Length/ Å
Cs1	C11	3.6969(7)	Ag1	Cl1 ²	2.510(5)
Cs1	Cl11	3.6969(7)	Ag1	Cl1 ¹²	2.510(5)
Cs1	C11 ²	3.6969(7)	Ag1	Cl1 ¹³	2.510(5)
Cs1	C11 ³	3.6969(7)	Ag1	C11 ³	2.510(5)
Cs1	C11 ⁴	3.6969(7)	Ag1	Cl1 ¹⁴	2.510(5)
Cs1	C11 ⁵	3.6969(6)	In1	C11	2.716(5)
Cs1	C116	3.6969(7)	In1	Cl1 ¹⁵	2.716(5)
Cs1	Cl17	3.6969(7)	In1	Cl1 ¹	2.716(5)
Cs1	C118	3.6969(7)	In1/ Cr1	Cl1 ¹⁶	2.716(5)
Cs1	C119	3.6969(7)	In1/ Cr1	Cl1 ⁸	2.716(5)
Cs1	Cl1 ¹⁰	3.6969(7)	In1/ Cr1	Cl1 ¹⁷	2.716(5)
Cs1	Cl1 ¹¹	3.6969(7)	In1/ Cr1	C11	2.716(5)
Ag1	C11	2.510(5)			

Table S4. Bond Angles of Cs₂AgIn_{0.7}Cr_{0.3}Cl₆ single crystal.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Cs1	Cl1 ¹	119.975(3)	Cl1 ¹⁶	Ag1	Cs1 ¹²	54.736(1)
Cl1 ²	Cs1	Cl1 ³	90.044(5)	Cl1 ¹⁶	Ag1	Cs114	125.3
Cl1 ⁴	Cs1	Cl15	119.974(3)	Cl17	Ag1	Cl1 ¹⁷	180.0
Cl1 ⁵	Cs1	Cl1 ³	176.81(17)	Cl1 ¹⁸	Ag1	Cl1	180.0
Cl1 ⁶	Cs1	Cl17	90.044(5)	Cl1 ¹⁶	Ag1	Cl1 ¹⁷	90.000(1)
C118	Cs1	C11 ⁵	62.60(13)	Cl1 ¹⁷	Ag1	Cl1	90.000(1)
C118	Cs1	Cl1 ³	119.974(3)	Cl1 ¹⁰	Ag1	Cl17	90.0
C11	Cs1	Cl1 ²	176.81(17)	Cl1 ¹⁶	Ag1	Cl17	90.0
Cl11	Cs1	Cl17	90.044(5)	Cl17	Ag1	Cl1 ¹⁸	90.000(1)
Cl14	Cs1	Cl17	119.974(3)	Cl1 ¹⁰	Ag1	Cl1 ¹⁸	90.000(1)
C11	Cs1	Cl15	90.044(5)	Cl1 ¹⁷	Ag1	Cl1 ¹⁸	90.0
Cl1 ¹	Cs1	Cl1 ²	57.39(14)	Cl1 ¹⁰	Ag1	Cl1 ¹⁶	180.0
Cl19	Cs1	Cl15	119.974(3)	Cl1 ¹⁰	Ag1	Cl1	90.0
Cl1 ¹	Cs1	Cl1 ³	62.60(13)	Cl1 ¹⁶	Ag1	Cl1 ¹⁸	90.0
C11 ²	Cs1	Cl19	62.60(13)	Cl1 ¹⁶	Ag1	Cl1	90.000(1)
Cl1	Cs1	Cl18	119.975(3)	Cl17	Ag1	Cl1	90.0
Cl1 ¹⁰	Cs1	C119	119.974(3)	Cl1 ¹⁰	Ag1	Cl1 ¹⁷	90.0
C11	Cs1	Cl17	57.39(14)	Cs1 ¹⁹	Inl	Cs1 ²⁰	70.5
C11 ⁸	Cs1	Cl1 ⁷	62.60(13)	Cs1 ²¹	In1	Cs1 ⁵	109.471(1)
C11 ¹	Cs1	Cl18	57.39(14)	Cs1 ²¹	In1	Cs1 ¹⁹	109.471(1)

Cl1 ¹⁰	Cs1	Cl17	57.39(14)	Cs1	In1	Cs1 ⁵	70.529(1)
C119	Cs1	Cl17	176.81(17)	Cs1 ²¹	Inl	Cs1 ³	109.471(1)
C11 ²	Cs1	C11 ⁵	90.044(5)	Cs1 ⁵	In1	Cs1 ³	109.471(1)
Cl1 ²	Cs1	Cl18	57.39(14)	Cs1 ⁵	In1	Cs1 ²⁰	180.0
Cl1 ¹¹	Cs1	Cl15	57.39(14)	Cs1	In1	Cs1 ²¹	180.0
Cl1 ¹⁰	Cs1	Cl15	119.974(3)	Cs1 ³	In1	Cs1 ²⁰	70.5
Cl1	Cs1	Cl1 ³	90.044(5)	Cs1	In1	Cs1 ³	70.529(1)
Cl1	Cs1	Cl14	62.60(13)	Cs1	In1	Cs119	70.529(1)
Cl1 ¹	Cs1	Cl19	90.044(5)	Cs1 ²¹	Inl	Cs1 ²⁰	70.529(1)
Cl1 ¹¹	Cs1	Cl1 ³	119.974(3)	Cs1	In1	Cs1 ²⁰	109.5
Cl18	Cs1	Cl19	119.974(3)	Cs1 ¹⁹	In1	Cs1 ³	109.5
Cl1 ¹	Cs1	Cl1 ⁴	119.974(3)	Cs1 ¹⁹	In1	Cs1 ⁵	109.5
Cl1 ¹	Cs1	Cl1 ¹¹	119.974(3)	C11 ²²	Inl	Cs1 ¹⁹	125.3
Cl1 ¹¹	Cs1	Cl19	62.60(13)	C11 ²²	Inl	Cs1 ³	54.736(1)
C11 ²	Cs1	Cl1 ¹¹	62.60(13)	C11 ²³	In1	Cs1 ²⁰	125.264(1)
C11 ²	Cs1	Cl14	119.974(3)	Cl16	In1	Cs119	54.7
C118	Cs1	Cl1 ¹¹	90.044(5)	Cl1	In1	Cs1	54.7
C11 ²	Cs1	Cl17	119.974(2)	C11 ²¹	Inl	Cs1 ⁵	125.3
C11 ⁴	Cs1	Cl1 ¹¹	90.044(5)	C11	In1	Cs1 ³	54.7
C118	Cs1	Cl1 ⁴	176.81(17)	C116	In1	Cs1	54.7
C116	Cs1	Cl1 ¹¹	57.39(14)	C11 ²¹	In1	Cs1 ³	125.3
Cl1 ¹¹	Cs1	Cl17	119.974(3)	Cl1 ²¹	Inl	Cs1 ²¹	54.7
C11	Cs1	Cl1 ¹⁰	57.39(14)	Cl1 ²³	In1	Cs1 ¹⁹	125.3
C11	Cs1	Cl1 ⁶	62.60(13)	Cl1 ²¹	In1	Cs1	125.3
Cl1 ¹	Cs1	Cl1 ¹⁰	62.60(13)	Cl1 ²¹	In1	Cs1 ²⁰	54.7
Cl1 ¹	Cs1	Cl15	119.974(2)	Cl16	Inl	Cs1 ²⁰	125.3
Cl1 ²	Cs1	Cl1 ¹⁰	119.974(3)	Cl1 ⁴	In1	Cs1 ⁵	125.3
Cl1 ¹	Cs1	Cl16	176.81(17)	C11	In1	Cs1 ²¹	125.3
Cl18	Cs1	Cl1 ¹⁰	90.044(5)	Cl1 ²²	In1	Cs1 ⁵	125.3
Cl1 ⁶	Cs1	Cl1 ⁵	57.39(14)	Cl16	In1	Cs1 ³	125.3
Cl1 ⁴	Cs1	Cl1 ¹⁰	90.044(5)	Cl16	In1	Cs1 ⁵	54.7
Cl1 ²	Cs1	Cl1 ⁶	119.974(3)	C11 ²³	Inl	Cs1 ²¹	54.736(1)
Cl1 ⁶	Cs1	Cl1 ¹⁰	119.974(3)	Cl1 ⁴	Inl	Cs1 ²¹	125.3
Cl17	Cs1	Cl15	62.60(13)	Cl1	Inl	Cs1 ¹⁹	125.3
Cl1 ¹¹	Cs1	Cl1 ¹⁰	176.81(17)	C11 ²²	Inl	Cs1 ²¹	54.7
C118	Cs1	Cl16	119.974(3)	Cl1	Inl	Cs1 ⁵	54.7
Cl16	Cs1	Cl1 ³	119.974(3)	Cl16	Inl	Cs1 ²¹	125.3
Cl1 ⁴	Cs1	Cl1 ³	57.39(14)	Cl1 ⁴	Inl	Cs1 ²⁰	54.7
Cl1 ¹⁰	Cs1	Cl1 ³	62.60(13)	Cl1 ⁴	In1	Cs1 ¹⁹	54.7
Cl1 ⁴	Cs1	Cl1 ⁶	62.60(13)	C11 ²³	Inl	Cs1 ⁵	54.736(1)
Cl17	Cs1	C11 ³	119.974(3)	C11 ²³	Inl	Cs1	125.264(1)
Cl19	Cs1	Cl13	57.39(14)	C11 ²³	Inl	Cs1 ³	125.3
Cl14	Cs1	Cl19	57.39(14)	Cl14	Inl	Cs1	54.7
Cl1	Cs1	Cl1 ¹¹	119.974(3)	C11 ²²	Inl	Cs1	125.3
Cl1 ⁶	Cs1	Cl1 ⁹	90.044(5)	Cl1 ²¹	Inl	Cs1 ¹⁹	54.7
Cl1	Cs1	Cl1 ⁹	119.974(3)	Cl1 ⁴	Inl	Cs1 ³	54.7
Cs1 ¹²	Ag1	Cs1 ¹³	180.0	Cl1	In1	Cs1 ²⁰	125.3
Cs1	Agl	Cs1 ¹⁴	109.5	Cl1 ²²	Inl	Cs1 ²⁰	54.7

Cs1	Ag1	Cs115	109.5	Cl1	In1	Cl1 ²²	90.000(1)
Cs113	Agl	Cs1 ¹⁴	70.529(1)	Cl14	In1	Cl1 ²¹	90.0
Cs1 ¹²	Ag1	Cs115	109.471(1)	Cl1 ²²	In1	Cl16	180.0
Cs1 ¹³	Ag1	Cs115	70.529(1)	Cl1 ²³	In1	Cl1 ²¹	90.000(1)
Cs1 ⁵	Agl	Cs1 ¹⁵	70.5	Cl1	In1	Cl1 ²³	90.000(1)
Cs1 ¹²	Agl	Cs1	109.471(1)	C11	In1	Cl1 ⁴	90.000(1)
Cs1 ¹²	Agl	Cs1 ⁵	70.529(1)	C11	In1	Cl16	90.000(1)
Cs1 ⁵	Agl	Cs1 ¹⁴	180.0	C11 ²³	In1	C11 ²²	90.000(1)
Cs1 ¹³	Agl	Cs1 ⁵	109.5	C11 ²³	In1	Cl16	90.0
Cs1 ¹³	Ag1	Cs1	70.529(1)	C11 ²²	In1	C11 ²¹	90.000(1)
Cs1	Agl	Cs1 ⁵	70.5	C11 ²³	In1	Cl1 ⁴	180.0
Cs1 ¹²	Ag1	Cs1 ¹⁴	109.471(1)	Cl1 ⁴	Inl	Cl1 ²²	90.0
Cs1 ¹⁴	Ag1	Cs1 ¹⁵	109.471(1)	C11 ⁶	In1	Cl1 ²¹	90.0
Cl1 ¹⁶	Ag1	Cs1 ⁵	54.7	C11	In1	Cl1 ²¹	180.0
Cl1 ¹⁰	Ag1	Cs1 ¹⁴	54.7	Cl1 ⁴	In1	Cl16	90.0
Cl17	Ag1	Cs115	54.7	Cs1 ¹²	Cl1	Cs1	176.81(17)
Cl17	Ag1	Cs1 ⁵	54.7	Cs1	Cl1	Cs1 ⁵	89.956(5)
Cl1 ¹⁷	Ag1	Cs1 ¹³	125.3	Cs1 ⁵	Cl1	Cs1 ³	176.81(17)
Cl1 ¹⁷	Ag1	Cs1 ¹²	54.7	Cs1	Cl1	Cs1 ³	89.956(5)
Cl1	Ag1	Cs1 ¹³	125.3	Cs1 ¹²	Cl1	Cs1 ³	89.956(5)
Cl1 ¹⁸	Ag1	Cs1 ⁵	125.3	Cs1 ¹²	Cl1	Cs1 ⁵	89.956(5)
Cl1 ¹⁷	Ag1	Cs1 ⁵	125.3	Ag1	Cl1	Cs1	91.59(8)
Cl1	Ag1	Cs1 ⁵	54.7	Ag1	Cl1	Cs1 ⁵	91.59(8)
Cl17	Ag1	Cs1 ¹²	125.3	Ag1	Cl1	Cs1 ³	91.59(8)
Cl1 ¹⁸	Ag1	Cs1 ¹²	125.3	Ag1	Cl1	Cs1 ¹²	91.59(8)
Cl1 ¹⁰	Ag1	Cs1 ⁵	125.3	Ag1	C11	Inl	180.0
Cl1	Agl	Cs1 ¹²	54.7	Ag1	Cl1	Cr1	180.0
Cl1 ¹⁰	Agl	Cs1 ¹³	54.7	Inl	Cl1	Cs1 ³	88.41(8)
Cl17	Agl	Cs1 ¹⁴	125.3	Inl	Cl1	Cs1	88.41(8)
Cl17	Agl	Cs1	54.7	Inl	Cl1	Cs1 ⁵	88.41(8)
Cl1	Agl	Cs1 ¹⁴	125.3	Inl	Cl1	Cs1 ¹²	88.41(8)
Cl1 ¹⁰	Agl	Cs1	54.7	Crl	Cl1	Cs1	88.41(8)
Cl17	Agl	$Cs1^{13}$	54.7	Cl1 ²¹	Cr1	Cl1 ²²	90.000(1)
Cl1 ¹⁰	Agl	Cs115	125.3	Cl1 ²³	Crl	Cl1 ⁴	180.0
CI1 ¹⁸	Agl	Cs1 ¹³	54.7	CI1 ²³	Crl	CI1 ²¹	90.000(1)
CI1 ¹⁷	Agl	Csl	125.3	CII	Crl	CI1 ⁴	90.000(1)
CII ¹⁶	Agl	Csl^{15}	54.736(1)	CII	Crl	CI1 ²¹	180.0
Cl1 ¹⁶	Agl	$Cs1^{13}$	125.264(1)	Cl1 ²¹	Crl	Cl1 ⁴	90.0
Cl1 ¹⁷	Agl	Cs115	125.3	Cll	Crl	Cl1 ²²	90.000(1)
CI1 ¹⁸	Agl	Csl	125.3	CI16	Crl	CI1 ⁴	90.0
CII	Agl	Csl ¹⁵	125.3	$CI1^{23}$	Crl	CI1 ²²	90.000(1)
$\frac{\text{CH}^{18}}{\text{CH}^{10}}$	Agl	$Cs1^{15}$	54.7	CII^{23}	Crl	CI16	90.0
	Agl	$Cs1^{12}$	125.3	CII^{22}	Crl	CI14	90.0
Cll	Agl	Csl	54.7	$CI1^{21}$	Crl	CI1 ⁰	90.0
$\frac{\text{Cll}^{16}}{\text{Cll}^{19}}$	Agl	Csl	125.3	CII	Crl	Cll^{23}	90.000(1)
CI1 ¹⁸	Agl	Csl^{14}	54.7	CII	Crl	CI1 ⁰	90.000(1)
$Cl1^{17}$	Ag1	Cs1 ¹⁴	54.7	Cl ¹⁶	Cr1	$Cl1^{22}$	180.0

Nominal (atomic ratio %) {[Cr] / ([Cr] + [In])} ×100	ICP-OES (atomic ratio % of Cr) {[Cr] / ([Cr] + [In])} ×100			
10	0.0766			
20	0.1592			
30	0.2814			
40	0.4568			
50	0.9586			
CAIC:3	0%Cr ³⁺ ,y%Yb			
Nominal (atomic ratio y %) {[Yb] / ([Yb] +[Cr]+ [In])} ×100	ICP-MS (atomic ratio % of Yb) {[Yb] / ([Yb] +[Cr]+ [In])} ×100			
3	0.018			

 $\frac{\text{Table S5 } \text{Cr}^{3+} \text{ and } \text{Yb}^{3+} \text{ content from starting materials and measured by ICP.}}{\text{CAIC:} x\%\text{Cr}^{3+}}$