<Electronic Supporting Information>

Combination of Aluminum Molecular Rings with Chemical Reduction Centers for Iodine Capture and Aggregation
Dan Luo, Fei Wang, Chen-Hui Liu, San-Tai Wang, Ya-Yong Sun, Wei-Hui Fang* and Jian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
Email: fwh@fjirsm.ac.cn.

Content

1. Synthesis S2
2.The structure information for porous materials S4
2. PXRD spectra of porous materials. S9
3. Massive production S11
4. Stability of porous materials. S12
5. TGA test for porous materials S14
6. EDS spectra of porous materials S15
7. FT-IR spectra of porous materials. S17
8. Determination of the valence state of metals. S19
9. Single-component gas sorption measurement S22
10. Isosteric heat of gas adsorption S24
11. IAST calculations of adsorption selectivity S24
12. Iodine capture, release and recyclability S25
14.Crystallography data. S34
13. Reference S39

1. Synthesis

Synthesis of AIOC-150

A mixture of aluminum isopropoxide ($204 \mathrm{mg}, 1 \mathrm{mmol}$), 3-Aminoisonicotinic acid ($210 \mathrm{mg}, 1.52$ mmol); Iron (III) chloride anhydrous ($60 \mathrm{mg}, 0.37 \mathrm{mmol}$), methylamine ethanol solution ($40 \%, 120 \mu \mathrm{~L}$), n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at $120^{\circ} \mathrm{C}$ for 4 days. When cooled to room temperature, orange crystals were obtained. (yield: 65% based on $\left.\mathrm{Al}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right)$. The crystals are rinsed with DMF and preserved under a sealed and dry environment. FTIR (KBr, cm^{-1}): 3453(s), 3074(w), 2958(w), 2850(w), 2706(m), 1661(s), 1597(m), 1490(s), 1252(m), 1047(m), 995(m), 910(s), 754(s) 702(m), 682(m), 630(m), 511(s). Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{Fe}_{2} \mathrm{Cl}_{4} \mathrm{C}_{104} \mathrm{~N}_{24} \mathrm{O}_{43} \mathrm{H}_{142}$ (MW 2885.75): C 43.25, N 11.65, H 4.96; found C 45.46, N 13.58, H 5.75.

Synthesis of AIOC-151-AIOC-154

A mixture of aluminum isopropoxide ($204 \mathrm{mg}, 1 \mathrm{mmol}$), isonicotinic acid ($120 \mathrm{mg}, 1 \mathrm{mmol}$), Iron (III) chloride anhydrous or Chromium (II) chloride hexahydrate or Nickel (II) chloride hexahydrate or Iron (III) bromide anhydrous ($60 \mathrm{mg}, 0.37 \mathrm{mmol} ; 30 \mathrm{mg}, 0.13 \mathrm{mmol} ; 30 \mathrm{mg}, 0.25 \mathrm{mmol} ; 90 \mathrm{mg}, 0.3$ $\mathrm{mmol})$, methylamine ethanol solution $(40 \%, 120 \mu \mathrm{~L})$, n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at $100^{\circ} \mathrm{C}$ for 4 days. When cooled to room temperature, deep red AIOC-151, light pink AIOC-152, light green AIOC-153 and red crystals AIOC154 were obtained. The crystals are rinsed with DMF and preserved under a sealed and dry environment. (yield: $53 \% ; 25 \% ; 28 \% ; 36 \%$ based on $\left.\mathrm{Al}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}\right)$. AlOC-151-FT-IR (KBr, cm^{-1}): 2954(w), 2917(w), 2868(w), 2842(w), 1674(m), 1607(s), 1552(s), 1491(s), 1443(s), 1215(w), 1127(w), 1063(m), 997(w) 782(m), 694(m), 562(m). AlOC-152-FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3389(\mathrm{w}), 3217(\mathrm{w}), 2961(\mathrm{w}), 2868(\mathrm{w}), 1610(\mathrm{~s})$, 1545(s), 1500(m), 1444(s), 1374(s), 1225(w), 1056(m), 1013(w), 858(w) 777(m), 701(m), 557(m). AIOC-153-FT-IR (KBr, cm^{-1}): 3444(s), 2969(w), 1614(s), 1545(s), 1437(w), 1397(w), 1342(w), 1232(w), 1163(w), 1067(w), 873(w), 768(m), 722(w) 693(w). AlOC-154-FT-IR (KBr, cm^{-1}): 3401(s), 2961(m), 2874(w), 1608(s), 1542(s), 1501(m), 1449(s), 1223(w), 1064(m), 780(m), 696(m), 563(m). Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{6} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{38} \mathrm{H}_{132}$ (MW 2754.30): C 45.35, N 6.10, H 4.83; found C 42.24, N 7.91, H 4.67. Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{Co}_{3} \mathrm{Cl}_{7} \mathrm{C}_{108} \mathrm{~N}_{8} \mathrm{O}_{38} \mathrm{H}_{132}$ (MW 2791.06): C 46.48, N 4.01, H 4.77; found C 46.14, N 6.64, H 5.75. Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{Ni}_{3} \mathrm{Cl}_{8} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{124}$ (MW 2617.34): C 47.73, N 6.42, H 4.78; found C 45.76, N 7.65, H 4.75.

Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Br}_{7} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{124}$ (MW 3057.71): C 40.85, N 5.50, H 4.09; found C 41.73, N 6.63, H 3.33 .

Synthesis of AIOC-155

A mixture of aluminum isopropoxide ($204 \mathrm{mg}, 1 \mathrm{mmol}$), 3-Chloroisonicotinic acid ($240 \mathrm{mg}, 1.52$ mmol), Iron (III) chloride anhydrous ($60 \mathrm{mg}, 0.37 \mathrm{mmol}$), methylamine ethanol solution ($40 \%, 120 \mu \mathrm{~L}$), n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at $100^{\circ} \mathrm{C}$ for 4 days. When cooled to room temperature, red crystals were obtained. (yield: 52% based on $\left.\mathrm{Al}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right)$. The crystals are rinsed with DMF and preserved under a sealed and dry environment. AlOC-155-FT-IR (KBr, cm^{-1}): 3433(s), 2955(w), 2880(w), 1666(m), 1628(s), 1481(m), 1597(m), 1443(s), 1330(w), 1275(w), 1157(w), 1099(m), 1055(w) 846(w), 789(m), 673(m), 560(s). Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{19} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{112}$ (MW3162.99): C 39.49, N 5.31, H 3.57; found C 38.60, N 6.85 , H 4.01 .

X-ray Crystallographic Analyses

Crystallographic data of crystal AIOC-151, AIOC-152, AIOC-154 and AIOC-151' were collected on Hybrid Pixel Array detector equipped with $\mathrm{Ga}-\mathrm{K} \alpha$ radiation $(\lambda=1.3405 \AA$) at about 293 K , as well as AIOC-150, AlOC-153, AlOC-155, $\mathbf{I}_{\mathbf{2}} @$ AlOC-151, $\mathbf{I}_{2} @$ AlOC-155, and AIOC-155' was at 100K. The structures were solved with the dual-direct methods using ShelxT and refined with the full-matrix leastsquares technique based on F^{2} using the SHELXL. ${ }^{[2]}$ Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically, riding on the concerned atoms and refined with fixed thermal factors. And n-butyl alcohol molecules are severely disordered and the related hydrogen atoms were not included. All absorption corrections were performed using the multi-scan program. In the crystal data after iodine adsorption, the large peaks of electron density within the pores were identified as iodine. Unfortunately, due to the disorder and poor crystal quality caused by high-temperature iodine steam treatment of the sample, wR_{2} value is high, but there is no problem with the crystal data before treatment, so we are confident that the data after iodine adsorption is valid. The obtained crystallographic data are summarized in Table S8-S11.

Reference:

1. W.-W. Wendlandt, H.-G.Hecht, Reflectance Spectroscopy; Interscience: New York, 1966.
2. G.-M. Sheldrick, Acta Crystallogr A Found Adv 2015, 71 (Pt 1), 3-8.

2.The structure information for porous materials

a

Traditional approach
b

Fig. S1. (a) Traditional approach employing aluminum ions and rigid tetracarboxylic acid ligand. ${ }^{[1]}$ (b) Perspective view of Al-PMOF linked by meso-tetra(4-carboxyl-phenyl) porphyrin ligand along the [010] direction. (c) Perspective view of Al-PMOF along the [001] direction.

(b)

(d)

Fig. S2. The edge- and corner-sharing arrangement of the eight octahedral: (a) in CAU-1, (b) in MIL-125. The corner-sharing arrangement of the eight octahedral (c) in FIR-125, (d) in MOF-520. H_{3} BTB is reduced to benzene for clarity. Color codes: Al, green; Ti, cyan; C, gray; N , blue; O , red.

Table S1. The representative 3D frameworks containing aluminum.

Compounds	Nodes/linker	Topology/Schläfli symbol	reference
CAU-1	$\left\{\mathrm{Al}_{8}(\mathrm{OH})_{4}\left(\mathrm{OCH}_{3}\right)_{8}\right\}^{12+}$		${ }^{[2]}$
CAU-3	$\left[\mathrm{Al}_{12}\left(\mathrm{OCH}_{3}\right)_{24}\right]^{12+}$		[3]
$\begin{gathered} \text { CAU-21- } \\ \text { BPDC } \end{gathered}$	$\mathrm{Al}_{8}(\mathrm{OH})_{8}(\mathrm{COO})_{16}$		[4]
MIL-53	infinite chains of $\mathrm{AlO}_{4}(\mathrm{OH})_{2}$		[5]
MIL-68	infinite chains of $\mathrm{AlO}_{4}(\mathrm{OH})_{2}$		[6]
MIL-101-NH2	$\left[\mathrm{Al}_{3} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})\right]$		[7]
Al-PMOF	infinite chains of $\mathrm{AlO}_{4}(\mathrm{OH})_{2}$		[1]
MOF-303	$\left\{\mathrm{AlO}_{6}\right\}$		[8]
MOF-519	$\mathrm{Al}_{8}(\mathrm{OH})_{8}(\mathrm{BTB})_{4}\left(\mathrm{H}_{2} \mathrm{BTB}\right)_{4}$		[9]

MOF-520	$\mathrm{Al}_{8}(\mathrm{OH})_{8}(\mathrm{BTB})_{4}(\mathrm{HCOO})_{4}$		[10]
MOF-523	$\left\{\mathrm{AlO}_{6}\right\}$		[11]
AlOC-81	$\mathrm{Al}_{10}(\mathrm{INA})_{10}(\mathrm{OEt})_{20}$		[12]

Table S2. The representative 3D frameworks that form by eight-membered ring.

CIJ-125

Fig. S3. (a) flexible pseudo-tetracarboxylic acid ligand in AIOC-150; (b) rigid metalloporphyrin carboxylic ligands. Color codes: Ti, green; Fe, cyan; C, gray; N, blue; O, red.; Cl, lime.

CAU-1

Fig. S4. (a) The 8-connected Al_{8} ring in $\mathbf{A I O C - 1 5 0}$; (b) the 12 -connected Al_{8} ring in CAU-1.

Fig. S5. the distance of $\mathrm{N} \cdots \mathrm{N}$ (a) in PT-cis linkers; (b) in breaking PT linkers.

Fig. S6. (a) octahedral cage; (b) nanotubes (side view); (c) nanotubes (top view) in AIOC-150; (d) octahedral cage; (e) novel basket-type cage; (f) tetragonal cage in AIOC-151. The cage I consist of an octahedral cage containing two neck-and-neck Al_{8} rings ($13.83 \AA \times 17.56 \AA \times 8.15 \AA$) (orange ball), cage Π is a basket-type cage made up of two vertical Al_{8} rings ($15.69 \AA \times 18.57 \AA \times 10.63 \AA$) (blue ball), while cage III is a tetragonal cage surrounded by eight Al_{8} rings ($15.78 \AA \times 15.78 \AA \times 18.31 \AA$) (yellow ball). Color codes: Al, green; C, gray; N , blue; O , red.

Fig. S7. (a) scu topology for AIOC-150; (b) ftw topology for AlOC-151. Color codes: Al, green; C, gray; N, blue; O, red.

Fig. S8. (a) top view; (b) side view of $\boldsymbol{s c} \boldsymbol{u}$ topology transform to $\boldsymbol{f t} \boldsymbol{w}$ topology; (c) the position of N on the IN ligands. The red dotted line represents the connection of the decorated IN ligands. Color codes: Al, green; C, gray; N , blue; O , red.

3. PXRD spectra of porous materials

Fig. S9. Simulated single-crystal PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-150. The first two narrow peaks fused into one broad peak even though the crystals were selected one by one by hand.

Fig. S10. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-151.

Fig. S11. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-152.

Fig. S12. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-153.

Fig. S13. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AlOC-154.

Fig. S14. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AlOC-155.

4. Massive production.

Fig. S15. Massive production of AIOC-151.

5. Stability of porous materials

Fig. S16. PXRD patterns of AlOC-151 in different organic solvents at room temperature for 24 h .

Fig. S17. PXRD patterns of AIOC-155 in different organic solvents at room temperature for 24 h .

Fig. S18. The Temperature-dependent PXRD patterns of AIOC-151.

Fig. S19. The Temperature-dependent PXRD patterns of AIOC-155.

6. TGA test for porous materials

Fig. S20. The TGA curve of AIOC-150 to AlOC-155.
The thermal stability of AIOC-150 to AIOC-155 was investigated in N_{2} atmosphere up to $800{ }^{\circ} \mathrm{C}$ with a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$, which is presented in Fig. S20. There are similar structures and compositions in AlOC-150 to AIOC-155, so only the TG investigation of AIOC-151 was described in detail. It reveals a weight loss (10%) between 25 and $100^{\circ} \mathrm{C}$ and is assigned to the removal of incorporated water from the pores of the framework. Then weight loss (17.3%) around $306^{\circ} \mathrm{C}$ can be attributed to the removal of DMF. The third weight loss (32.5%) between 306 and 501 is assigned to the departure of the organic ligand owning to degradation of the structure.

7. EDS spectra of porous materials

Fig. S21. The EDS spectrum of compound AlOC-150.

Fig. S22. The EDS spectrum of compound AIOC-151.

Fig. S23. The EDS spectrum of compound AIOC-152.

Fig. S24. The EDS spectrum of compound AIOC-153.

Fig. S25. The EDS spectrum of compound AlOC-154.

Fig. S26. The EDS spectrum of compound AIOC-155.

8. FT-IR spectra of porous materials

Fig. S27. IR spectrum of AlOC-150.

Fig. S28. IR spectrum of AlOC-151.

Fig. S29. IR spectrum of AlOC-152.

Fig. S30. IR spectrum of AlOC-153.

Fig. S31. IR spectrum of AlOC-154.

Fig. S32. IR spectrum of AlOC-155.
The IR spectra of AIOC-150 to AIOC-155 have been recorded in the range of $4000-400 \mathrm{~cm}^{-1}$ from solid samples palletized with KBr , which are presented in Fig. S27-S32. In the functional group region ($v>1300$ cm^{-1}), the weak absorption bands at $3087-3063 \mathrm{~cm}^{-1}$ are observed, which can be ascribed to the stretching vibration modes of $\mathrm{C}-\mathrm{H}$ bonds in pyridine rings. On the other hand, the aliphatic $\mathrm{C}-\mathrm{H}$ stretching-vibrations of the n-butanol oxygen group occur about $3000-2800 \mathrm{~cm}^{-1}$. Moreover, the asymmetric stretching vibration $\left(\mathrm{v}_{\text {as }}\right)$ and symmetric stretching vibration $\left(v_{s}\right)$ of the carboxylate group can be clearly attributed, namely, the band at $1610-1560 \mathrm{~cm}^{-1}$ is assigned to the $v_{\text {as }}\left(\mathrm{CO}_{2}^{-}\right)$whilst the signal at $1440-1360 \mathrm{~cm}^{-1}$ is ascribed to the $v_{\mathrm{s}}\left(\mathrm{CO}_{2}^{-}\right)$. In the fingerprint region $\left(1300 \mathrm{~cm}^{-1}>v>400 \mathrm{~cm}^{-1}\right)$. The incorporation of 3-Chloroisonicotinic acid in AIOC155 is supported by the $\mathrm{C}-\mathrm{Cl}$ vibrations at $670 \mathrm{~cm}^{-1}$. The typical bands for the NH_{2} group at 3497 and 3385 cm^{-1} are not observed in the AlOC-150 owing to the presence of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

9. Determination of the valence state of metals

Table S3 ICP analysis for porous materials.

		AlOC-151	AlOC-152	AlOC-153
Wt\%	Exp.	$\mathrm{Al}: 6.11 \%$	$\mathrm{Al}: 6.85 \%$	$\mathrm{Al}: 6.09 \%$
		$\mathrm{Fe}: 4.13 \%$	$\mathrm{Co}: 4.77 \%$	$\mathrm{Ni}: 4.57 \%$
	Cal.	$\mathrm{Al}: 7.98 \%$	$\mathrm{Al}: 7.74 \%$	$\mathrm{Al}: 8.40 \%$
Al:M		$\mathrm{Fe}: 6.19 \%$	$\mathrm{Co}: 6.34 \%$	$\mathrm{Ni}: 6.85 \%$
	Exp.	$3.0628: 1$	$3.1366: 1$	$2.8989: 1$
	Cal.	$2.6657: 1$	$2.6665: 1$	$2.6676: 1$

($\mathrm{M}=\mathrm{Fe}$ for AlOC-151; Co for AlOC-152; Ni for AlOC-153)

Table S4 BVS analysis for porous materials.
BVS analysis for AIOC-151

BVS Value	Bond distance		BVS Value	Bond distance	
Al01	Al01-O1	1.906	$\begin{gathered} \mathrm{Al02} \\ 3.1197 \end{gathered}$	Al02-O3	1.952
3.1602	Al01-O1 ${ }^{1}$	1.906		Al02-O4 ${ }^{1}$	1.873
	Al01-O2	1.942		Al02-O4	1.873
	Al01-O4 ${ }^{1}$	1.87		Al02-O6	1.8507
	Al01-O4	1.87		Al02-O7	1.909
	Al01-O5	1.8436		Al02-O7 ${ }^{1}$	1.909
Fe01	Fe01-N1	2.233	$\begin{gathered} \mathrm{Fe} 02 \\ 1.8938 \end{gathered}$	Fe02-N3 ${ }^{7}$	2.256
1.9819	Fe01-N1 ${ }^{6}$	2.233		Fe02-N3	2.256
	Fe01-N2	2.235		Fe02-N3 ${ }^{8}$	2.256
	Fe01-N2 ${ }^{6}$	2.235		Fe02-N3 ${ }^{9}$	2.256
	Fe01-Cl06	2.436		Fe02-Cl05	2.444
	Fe01-Cl06	2.436		Fe02-Cl05	2.444

[^0]BVS analysis for AIOC-152.

BVS Value	Bond distance		BVS Value	Bond distance	
$\begin{gathered} \mathrm{Al} 03 \\ 3.1657 \end{gathered}$	Al03-O00B	1.844	$\begin{gathered} \mathrm{Al04} \\ 3.1917 \end{gathered}$	Al04-O00A	1.952
	Al03-O00C	1.865 m		Al04-O00C	1.873
	Al03-O00D	1.896		Al04-O00F	1.873
	Al03-O00E	1.949		Al04-O00G	1.8507
	Al03-O00I ${ }^{1}$	1.912		Al04-O00H ${ }^{2}$	1.909
	Al03-O009	1.869		Al04-O009	1.909
$\begin{gathered} \mathrm{Co} 01 \\ 2.1288 \end{gathered}$	Co01-Cl05	2.502			
	Co01-C106	2.475			
	Co01-Cl07	2.447			
	Co01-N1 ${ }^{3}$	2.163			
	Co01-N1 ${ }^{4}$	2.163			
	Co01-N00Z	2.146			

System code: ${ }^{2} 1-\mathrm{X}, 1-\mathrm{Y},+\mathrm{Z} ;{ }^{3}-1 / 2+\mathrm{X}, 3 / 2-\mathrm{Y}, 2-\mathrm{Z} ;{ }^{4}-1 / 2+\mathrm{Y}, 3 / 2-\mathrm{X},+\mathrm{Z}$.

BVS analysis for AlOC-153

BVS Value	Bond distance		BVS Value	Bond distance	
Al01	Al01-O5	1.838	$\begin{gathered} \mathrm{Al} 02 \\ 3.0434 \end{gathered}$	Al02-O4	1.87
3.2132	Al01-O4 ${ }^{7}$	1.861		Al02-O4 ${ }^{7}$	1.87
	Al01-O4	1.861		Al02-O3	1.942
	Al01-O1	1.899		Al02-O3 ${ }^{7}$	1.942
	Al01-O1 ${ }^{7}$	1.899		Al02-O7	1.898
	Al01-O2	1.944		Al02-O7 ${ }^{7}$	1.898
Ni00	Ni00-Cl08	2.418	$\begin{gathered} \mathrm{Ni} 01 \\ 2.0318 \end{gathered}$	Ni01-Cl1	2.503
2.2455	Ni00- Cl08 ${ }^{1}$	2.418		Ni01-C107	2.479
	Ni00-N0I	2.064		Ni02-N3	2.120
	Ni00-N0N ${ }^{2}$	2.075		Ni02-N0x ${ }^{2}$	2.120
	Ni00-N0T ${ }^{3}$	2.11		Ni02-N0x ${ }^{5}$	2.120
	Ni00-N011 ${ }^{4}$	2.147		Ni02-N0x ${ }^{6}$	2.120

System code: ${ }^{1} 1 / 2+\mathrm{Y},-1 / 2+\mathrm{X}, 2-\mathrm{Z} ;{ }^{2} 1-\mathrm{Y},+\mathrm{X},+\mathrm{Z} ;{ }^{3} 1-\mathrm{Y},+\mathrm{X}, 2-\mathrm{Z} ;{ }^{4}+\mathrm{X},+\mathrm{Y}, 2-\mathrm{Z} ;{ }^{5} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{6}+\mathrm{Y}, 1-\mathrm{X}, 1-$ Z; ${ }^{7} 1 / 2+Y,-1 / 2+X,+Z ;$

Fig. S33. High-resolution spectrum of Fe 2 p for AIOC-151.

Fig. S34. High-resolution spectrum of Co 2p for AIOC-152.

Fig. S35. High-resolution spectrum of Ni 2 p for AIOC-153.

10. Single-component gas sorption measurement

The gas adsorption isotherms were generated on ASAP 2020 volumetric adsorption equipment. The fresh crystal samples were solvent-exchanged with methanol for AIOC-151, ethanol for AIOC-155 at least 10 times within three days to make sure that the guest solvents were removed. Then the samples were evacuated at 353K for 6 h for AIOC-151, instead of at 373 K for AIOC-155. The sorption measurement was maintained at 77 K 273 K and 298 K under liquid nitrogen, ice slurry and water, respectively.

Figure S36. PXRD patterns of AIOC-151 after methanol exchange and vacuum activation.

Fig. S37. N_{2} isotherm at 77 K of AIOC-151 after solvent with methanol.

Fig. S38. N_{2} isotherm at 77 K of AIOC-155 after solvent with ethanol.

Fig. S39. CO_{2} adsorption isotherm at 298 K and 273 K of AIOC-151 and AIOC-155. The overall adsorption effect of AIOC-155 is better than that of AIOC-151.

Fig. S40. Light hydrocarbon $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}\right.$ and $\left.\mathrm{C}_{3} \mathrm{H}_{8}\right)$ adsorption isotherms of AIOC-151 at 273 K.

11. Isosteric heat of gas adsorption

The Clausius-Clapeyron equation was employed to calculate the enthalpies of CO_{2} adsorption for AIOC-151, a_{i} and b_{i} are parameters which are independent of temperature:

$$
\ln P=\ln N_{+} \frac{1}{T} \sum_{i=0}^{m} a_{i} N^{i} \sum_{+i=0}^{n} b_{i} N^{i}
$$

Where p is pressure, N is the amount of uptake, T is the temperature and m and n the number of terms required to adequately describe the isotherm.

$$
Q_{s t=-\mathrm{R}} \sum_{i=0}^{m} a_{i} N^{i}
$$

Where R is the universal gas constant. The coverage dependencies of $Q_{s t}$ values were calculated from fitting the adsorption data at different temperatures for AIOC-151.

Fig. S41. The isosteric heat of CO_{2} adsorption for $\mathbf{A l O C} \mathbf{- 1 5 1}$ is estimated by the virial equation (left); The CO_{2} sorption isotherms for AIOC-151 fitting by the virial method (right).

12. IAST calculations of adsorption selectivity

In order to evaluate the separation effect of AIOC-151 on binary mixed-light alkanes, the single-component adsorption isotherms of light alkanes were calculated based on the dual-site Langmuir-Freundlich (DSLF) model. Gas selectivity of mixed $\mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}(50 / 50$, $\mathrm{v} / \mathrm{v})$ and $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}(50 / 50, \mathrm{v} / \mathrm{v})$ at 298 K were carried out using the ideal adsorbed solution theory (IAST).

$$
\mathrm{N}=A_{1} \frac{b_{1} P^{c_{1}}}{1+b_{1} P^{c_{1}}}+A_{2} \frac{b_{2} P^{c_{2}}}{1+b_{2} P^{c_{2}}}
$$

where P (unit: kPa) is the pressure of the bulk gas at equilibrium with the adsorbed phase, N (unit: $\mathrm{mol} / \mathrm{kg}$) is the adsorbed amount per mass of adsorbent, A_{1} and A_{2} (unit: $\mathrm{mmol} / \mathrm{g}$) are the saturation capacities of two different sites, b_{1} and b_{2} (unit: $1 / \mathrm{kPa}$) is the affinity coefficients of these sites, and c_{1} and c_{2} represent the deviations from an ideal homogeneous surface.

Fig. S42. the IAST selectivity of $50 / 50 \mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$ and $50 / 50 \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}$ for AIOC-151 at $298 \mathrm{~K}, 1$ bar.

13. Iodine capture, release and recyclability

Fig. S43. Comparison of Roman spectrum of AIOC-151 before and after iodine adsorption.

Fig. S44. Comparison of Roman spectrum of AIOC-155 before and after iodine adsorption (collected with an excitation line of 532 nm at 10% laser power).

Fig. S45. The high-resolution spectrum of 3d I for $\mathbf{I}_{\mathbf{2}} @$ AIOC-151.

Fig. S46. The high-resolution spectrum of 3d I for $\mathbf{I}_{\mathbf{2}} @$ AIOC-155.

Fig. S47. EDS-mapping spectra of $\mathbf{I}_{\mathbf{2}} @ A I O C-151$. From left to right are crystal appearance, aluminum, iron, chlorine and iodine elements.

Figure S 48 . EDS-mapping spectra of $\mathbf{I}_{\mathbf{2}} @ \mathbf{A l O C}-155$. From left to right are crystal appearance, aluminum, iron, chlorine and iodine elements.

Fig. S49. PXRD patterns of AIOC-151 after iodine adsorption and release with methanol.

Fig. S50. PXRD patterns of AIOC-155 after iodine adsorption and release with ethanol.

Fig. S51 the SEM imagines before (left) and after (right) iodine adsorption.

Fig. S52. FT-IR spectra of AIOC-151 before and after iodine adsorption. the characteristic peak at ~ 2967.7 cm^{-1} assigned to the $\mathrm{C}-\mathrm{H}$ on pyridine ring stretching vibration blue shift.

Fig. S53. FT-IR spectra of AIOC-151 and release with methanol. The absorption peak was restored after release.

Fig. S54. FT-IR spectra of AIOC-155 before and after iodine adsorption. the characteristic peak at ~ 673.1 cm^{-1} assigned to the $\mathrm{C}-\mathrm{Cl}$ on pyridine ring stretching vibration red shift.

Fig. S55. FT-IR spectra of AIOC-155 and after release with ethanol. The absorption peak was restored after release.

Fig. S56. I-V curves of pristine AlOC-151 and $\mathbf{I}_{\mathbf{2}}$ @AIOC-151.

Table S5. BVS analysis of Fe atoms after iodine adsorption.
BVS analysis for $\mathbf{I}_{\mathbf{2}}$ @AIOC-151

$\begin{gathered} \mathrm{Fe} 1 \\ 2.5777 \end{gathered}$	Fe1-Cl1	2.279	$\begin{gathered} \mathrm{Fe} 2 \\ 2.4365 \end{gathered}$	$\mathrm{Fe} 2-\mathrm{Cl} 2^{1}$	2.313
	Fe1-Cl1 ${ }^{1}$	2.279		Fe2-Cl2	2.314
	Fe1-N1	2.203		Fe2-N2 ${ }^{2}$	2.187
	Fe1-N1 ${ }^{5}$	2.203		Fe2-N2	2.187
	Fe1-N00s	2.151		Fe2-N2 ${ }^{3}$	2.187
	Fel-N00s ${ }^{5}$	2.151		Fe2-N2 ${ }^{1}$	2.187

System code: ${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y},-\mathrm{Z} ;{ }^{2}+\mathrm{Y}, 1-\mathrm{X},-\mathrm{Z} ;{ }^{3} 1-\mathrm{Y},+\mathrm{X},+\mathrm{Z} ;{ }^{5}+\mathrm{X},+\mathrm{Y}, 1-\mathrm{Z}$;

BVS analysis for $\mathbf{I}_{\mathbf{2}} @ \mathbf{A l O C - 1 5 5}$

$\begin{gathered} \mathrm{Fe} 0 \\ 2.3779 \end{gathered}$	Fe00-Cl06	2.387	$\begin{gathered} \mathrm{Fe} 1 \\ 2.3521 \end{gathered}$	Fe1-Cl05	2.429
	Fe00-Cl06 ${ }^{1}$	2.387		Fel-Cl05 ${ }^{5}$	2.429
	Fe00-N0F ${ }^{2}$	2.203		Fel-N0H ${ }^{6}$	2.244
	Fe00- N0F ${ }^{3}$	2.203		Fel- N0H	2.244
	Fe00-N0G	2.218		Fe1- N0H ${ }^{3}$	2.244
	Fe00-N0G ${ }^{4}$	2.218		Fe1- ${\mathrm{N} 0 \mathrm{H}^{7}}$	2.244

System code: ${ }^{1}-1 / 2+Y, 1 / 2+X, 1-Z ;{ }^{2} 1-Y,+X, 1-Z ;{ }^{3} 1-Y,+X,+Z ;{ }^{4}+X,+Y, 1-Z ;{ }^{5} 1-X, 1-Y, 2-Z ;{ }^{6}+X,+Y, 2-$ Z; ${ }^{7+}$ Y, 1-X, 2-Z;

Fig. S57. UV visible spectra of $\mathbf{I}_{\mathbf{2}} @$ AIOC-151 (black line) and $\mathbf{I}_{\mathbf{2}} @ A 1 O C-155$ (red line); upper right inset: UV visible spectra of AIOC-151 and AIOC-155; lower left inset: photographs showing the visible color change when AIOC-151 were exposed to I_{2} vapor.

Fig. S58 a) O-H…I interaction and b) the bond length in adsorption site I of $\mathbf{I}_{\mathbf{2}} @ A I O C-151$. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S59 C-H $\cdots \mathrm{I}$ interaction and the bond length in adsorption site II of $\mathbf{I}_{\mathbf{2}} @ A \mathbf{A O C}-\mathbf{1 5 1}$. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.
a)

b)

Fig. S60 O-H $\cdots \mathrm{I}$ interaction and (b) the bond length in adsorption site I of $\mathbf{I}_{\mathbf{2}} @ \mathbf{A l O C - 1 5 5}$. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S61 C-Cl $\cdots \mathrm{I}$ interaction and the bond length in adsorption site II of $\mathbf{I}_{\mathbf{2}} @ \mathbf{A l O C}-155$. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S62 C-Cl \cdots I, C-H \cdots I interaction and the bond length in adsorption site III of $\mathbf{I}_{\mathbf{2}} @$ AlOC-155. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S63 the Adsorption capacity of porous materials at $80^{\circ} \mathrm{C}$ in saturated iodine vapor with $0 \% \mathrm{RH}$ and 18% RH.

Fig. S64 (a) the photos of Crystal color changes of AIOC-151 before and after methanol release; (b) photos of the I_{2}-released process of $\mathbf{I}_{2} @ \mathbf{A I O C}$ - $\mathbf{1 5 1}$ soaked in methanol; (c) temporal evolution absorbance for the I_{2} released from methanol; (d) three times cycle experimental of AIOC-151.

14.Crystallography data

Table S6. Comparison of parameters for AIOC-151 before and after iodine adsorption and release.

	AlOC-151	$\mathrm{I}_{2} @$ AlOC-151	AlOC-151-1
Crystal system	tetragonal	tetragonal	tetragonal
Space group	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$
$\mathrm{a}[\AA]$	$22.1660(2)$	$22.0217(4)$	$22.1414(2)$
$\mathrm{b}[\AA]$	$22.1660(2)$	$22.0217(4)$	$22.1414(2)$
$\mathrm{c}[\AA]$	$18.5421(3)$	$18.4702(5)$	$18.5120(2)$
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	90	90	90
$\gamma\left[{ }^{\circ}\right]$	90	$9957.2(4)$	$9075.35(19)$
$\mathrm{V}\left[\AA^{3}\right]$	$9110.3(2)$	$0.2154,0.5111$	$0.0712,0.2322$
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.0751,0.2467$	$0.2259,0.5195$	$0.0820,0.2434$
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{all}$ data $]$	$0.0853,0.2587$		

Table S7. Comparison of parameters for AIOC-155 before and after iodine adsorption and release.

	AlOC-155	$\mathrm{I}_{2} @$ AlOC-155	AlOC-155-1
Crystal system	tetragonal	tetragonal	tetragonal
Space group	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$
$\mathrm{a}[\AA]$	$22.1208(2)$	$22.1507(10)$	$22.0492(3)$
$\mathrm{b}[\AA]$	$22.1208(2)$	$22.1507(10)$	$22.0492(3)$
$\mathrm{c}[\AA]$	$18.5119(2)$	$18.5030(2)$	$18.4944(3)$
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	90	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90	909
$\mathrm{~V}\left[\AA^{3}\right]$	$9058.42(19)$	$0.1844,0.4761$	$0.0832,0.2482$
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.0954,0.2685$	$0.2025,0.4934$	$0.0922,0.2606$
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{all}$ data $]$	$0.1111,0.2829$		

Table S8. Experimental single-crystal X-ray data for AIOC-150, AIOC-151 and AIOC-152.

	AlOC-150	AlOC-151	AlOC-152
Empirical formula	$\mathrm{Al}_{8} \mathrm{Fe}_{2} \mathrm{Cl}_{4} \mathrm{C}_{104} \mathrm{~N}_{24} \mathrm{O}_{43} \mathrm{H}_{142}$	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{6} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{38} \mathrm{H}_{132}$	$\mathrm{Al}_{8} \mathrm{Co}_{3} \mathrm{Cl}_{7} \mathrm{C}_{108} \mathrm{~N}_{8} \mathrm{O}_{38} \mathrm{H}_{132}$
Formula weight	2885.75	2754.30	2791.06
Temperature / k	100.01(10)	293(2)	293(2)
Crystal system	tetragonal	tetragonal	tetragonal
Space group	P4/nbm	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$
a [\AA]	27.5493(2)	22.1660(2)	$21.99545(17)$
b [\AA]	27.5493(2)	22.1660(2)	$21.99545(17)$
c [\AA]	12.87900(10)	18.5421(3)	18.3985(2)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
β [${ }^{\text {] }}$	90	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$\mathrm{V}\left[\AA^{3}\right]$	9774.70(16)	9110.3(2)	8901.23(17)
Z	2	2	2
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	0.980	1.004	1.041
$\mu\left[\mathrm{mm}^{-1}\right]$	2.566	2.406	2.730
F (000)	3004.0	2856.0	2888.0
	$-34 \leq h \leq 34$	$-27 \leq h \leq 16$	$-28 \leq \mathrm{h} \leq 28$
Index ranges	$-25 \leq \mathrm{k} \leq 30$	$-13 \leq \mathrm{k} \leq 28$	$-14 \leq \mathrm{k} \leq 28$
	$-7 \leq 1 \leq 15$	$-24 \leq 1 \leq 23$	$-23 \leq 1 \leq 23$
Reflections collected	30845	35007	35955
Independent refs [$\mathrm{R}_{\text {int }}$]	5141 [0.0280]	5506 [0.0338]	5379 [0.0248]
date/restraints/parameters	5141/84/276	5506/21/239	5379/6/274
Goodness-of-fit on F^{2}	1.384	1.064	1.074
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0926, 0.2924	0.0751, 0.2467	0.0769, 0.2549
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [all data]	0.1019, 0.0.3110	0.0853, 0.2587	0.0797, 0.2591

Table S9. Experimental single crystal X-ray data for AIOC-153, AlOC-154 and AIOC-155.

	AlOC-153	AlOC-154	AlOC-155
Empirical formula Al_{8}	$\mathrm{Al}_{8} \mathrm{Ni}_{3} \mathrm{Cl}_{8} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{124}$	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Br}_{7} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{124}$	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{19} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{112}$
Formula weight	2617.34	3057.71	3162.99
Temperature / k	100.00(10)	100.00(10)	100.00(10)
Crystal system	tetragonal	tetragonal	tetragonal
Space group	$P 4 \mathrm{bm}$	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$
a $\AA \AA]$	21.8334(3)	22.0664(10)	22.1208(2)
$\mathrm{b}[\AA]$	21.8334(3)	22.0664(10)	22.1208(2)
c [\AA]	18.3026(5)	18.4584(3)	18.5119(2)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	90	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$\mathrm{V}\left[\AA^{3}\right]$	8724.8(3)	8987.88(9)	9058.42(19)
Z	2	2	2
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	0.996	1.130	1.160
$\mu\left[\mathrm{mm}^{-1}\right]$	3.062	3.088	3.606
F (000)	2680.0	3091.0	3226.0
	$-24 \leq h \leq 25$	$-27 \leq h \leq 28$	$-25 \leq \mathrm{h} \leq 20$
Index ranges	$-19 \leq \mathrm{k} \leq 28$	$-24 \leq \mathrm{k} \leq 28$	$-28 \leq \mathrm{k} \leq 27$
	$-23 \leq 1 \leq 18$	$-23 \leq 1 \leq 12$	$-23 \leq 1 \leq 23$
Reflections	31843	31137	32144
collected			
Independent refs [$\mathrm{R}_{\text {int }}$]	$8869[0.0761]$	5407 [0.0273]	5430 [0.0411]
date/restraints/parameters	rs $\quad 8869 / 220 / 490$	5407/355/282	5430/48/332
Goodness-of-fit on F^{2}	1.008	1.297	1.092
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0883, 0.2402	0.0851, 0.2800	0.0954, 0.2685
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [all data]	$0.1246,0.2714$	0.0908, 0.2879	0.1111, 0.2829

Table S10. Experimental single-crystal X-ray data for $\mathbf{I}_{\mathbf{2}} @ A 1 O C-151$ and $\mathbf{I}_{\mathbf{2}} @ A 1 O C-155$.

	$\mathrm{I}_{2} @$ AlOC-151	$\mathrm{I}_{2} @$ AlOC-155
Empirical formula	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{6} \mathrm{C}_{100} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{120} \mathrm{I}_{5.5}$	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{18} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{116} \mathrm{I}_{3.2}$
Formula weight	3360.11	3545.75
Temperature / k	100.01(12)	100.00(10)
Crystal system	tetragonal	tetragonal
Space group	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$
a [\AA]	22.0217(4)	22.1507(10)
b [\AA]	22.0217(4)	22.1507(10)
c [\AA]	18.4702(5)	18.5030(2)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90
$\mathrm{V}\left[\AA^{3}\right]$	8957.2(4)	9078.56(13)
Z	2	2
ρ calcd [$\mathrm{g} \mathrm{cm}^{-3}$]	1.246	1.297
$\mu\left[\mathrm{mm}^{-1}\right]$	11.056	7.882
F (000)	3335.0	3490.0
	$-25 \leq h \leq 25$	$-25 \leq \mathrm{h} \leq 28$
Index ranges	$-26 \leq \mathrm{k} \leq 26$	$-23 \leq \mathrm{k} \leq 28$
	$-22 \leq 1 \leq 18$	$-23 \leq 1 \leq 23$
Reflections collected	25354	32712
Independent refs [Rint]	4642[0.0902]	5441 [0.0534]
date/restraints/parameters	4642/108/310	5541/127/357
Goodness-of-fit on F^{2}	2.286	2.303
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.2154, 0.5111	0.1844, 0.4761
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [all data]	0.2259, 0.5195	0.2025, 0.4934

Table S11. Experimental single-crystal X-ray data for AIOC-151' and AIOC-155'.

	AlOC-151-1	AlOC-155-1
Empirical formula	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{7} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{120}$	$\mathrm{Al}_{8} \mathrm{Fe}_{3} \mathrm{Cl}_{19} \mathrm{C}_{104} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{H}_{112}$
Formula weight	2609.26	3162.99
Temperature / k	293(2)	100.01(10)
Crystal system	tetragonal	tetragonal
Space group	$P 4 / \mathrm{mbm}$	$P 4 / \mathrm{mbm}$
a $[\AA]$	22.1414(2)	22.0492(3)
b [\AA]	22.1414(2)	22.0492(3)
c [\AA]	18.5120(2)	18.4944(3)
$\alpha\left[{ }^{\circ}\right]$	90	90
β [${ }^{\circ}$]	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90
$\mathrm{V}\left[\AA^{3}\right]$	9075.35(19)	8991.4(3)
Z	2	2
ρ calcd $\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	0.955	1.168
$\mu\left[\mathrm{mm}^{-1}\right]$	2.488	3.632
F (000)	2658.0	3226.0
	$-19 \leq h \leq 26$	$-25 \leq \mathrm{h} \leq 25$
Index ranges	$-27 \leq \mathrm{k} \leq 28$	$-25 \leq \mathrm{k} \leq 23$
	$-23 \leq 1 \leq 20$	$-21 \leq 1 \leq 21$
Reflections collected	31143	28983
Independent refs [Rint]	5539 [0.0349]	4092 [0.0409]
date/restraints/parameters	5539/55/268	4092/49/323
Goodness-of-fit on F^{2}	1.041	1.032
$\mathrm{R}_{1}, \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0712, 0.2322	0.0832, 0.2482
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [all data]	0.0820, 0.2434	0.0922, 0.2606

15. Reference

[1] A. Fateeva, P.-A. Chater, C.-P. Ireland, A.-A. Tahir, Y.-Z. Khimyak, P.-V. Wiper, J.-R. Darwent, M.-J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440-7444.
[2] T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Ferey, J. Senker, N. Stock, Angew. Chem. Int. Ed. 2009, 48, 5163-5166.
[3] H. Reinsch, M. Feyand, T. Ahnfeldt, N. Stock, Dalton Trans. 2012, 41, 4164-4171.
[4] M. Kruger, A.-K. Inge, H. Reinsch, Y.-H. Li, M. Wahiduzzaman, C.-H. Lin, S.-L. Wang, G. Maurin, N. Stock, Inorg. Chem. 2017, 56, 5851-5862.
[5] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, Chem. Eur. J. 2004, 10, 1373-1382.
[6] H. Embrechts, M. Kriesten, M. Ermer, W. Peukert, M. Hartmann, M. Distaso, RSC Adv. 2020, 10, 7336-7348.
[7] P. Serra-Crespo, E.-V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 2011, 23, 2565-2572.
[8] N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, O. M. Yaghi, Science 2021, 374, 454-459
[9] F. Gandara, H. Furukawa, S. Lee, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 5271-5274.
[10] S. Lee, E.-A. Kapustin, O. M. Yaghi, Science 2016, 353, 808-811.
[11] E.-D. Bloch, D. Britt, C. Lee, C.-J. Doonan, F.-J. Uribe-Romo, H. Furukawa, J.-R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382-14384.
[12] L. Geng, C.-H. Liu, S.-T. Wang, W.-H. Fang, J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 1673516740.
[13] M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Ferey, J. Am. Chem. Soc. 2009, 131, 10857-10859.
[14] Y.-Y. Sun, D.-F. Lu, Y.-X. Sun, M.-Y. Gao, N. Zheng, C. Gu, F. Wang, J. Zhang, ACS Mater. Lett. 2020, 3, 64-68.
[15] S. Wang, H. Reinsch, N. Heymans, M. Wahiduzzaman, C. Martineau-Corcos, G.-De Weireld, G. Maurin, C. Serre, Matter 2020, 2, 1-11.

[^0]: System code: ${ }^{13} / 2-\mathrm{Y}, 3 / 2-\mathrm{X},+\mathrm{Z} ;{ }^{6}+\mathrm{X},+\mathrm{Y}, 1-\mathrm{Z} ;{ }^{7} 2-\mathrm{Y},+\mathrm{X},+\mathrm{Z} ;{ }^{8} 2-\mathrm{X}, 2-\mathrm{Y}, 2-\mathrm{Z} ;{ }^{9}+\mathrm{Y}, 2-\mathrm{X}, 2-\mathrm{Z}$.

