< Electronic Supporting Information>

Combination of Aluminum Molecular Rings with Chemical Reduction Centers for Iodine Capture and Aggregation

Dan Luo, Fei Wang, Chen-Hui Liu, San-Tai Wang, Ya-Yong Sun, Wei-Hui Fang* and Jian Zhang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China Email: fwh@fjirsm.ac.cn.

Content

1. Synthesis	
2. The structure information for porous materials	S4
3. PXRD spectra of porous materials	
4. Massive production	
5. Stability of porous materials	
6. TGA test for porous materials	
7. EDS spectra of porous materials	
8. FT-IR spectra of porous materials	
9. Determination of the valence state of metals	
10. Single-component gas sorption measurement	
11. Isosteric heat of gas adsorption	
12. IAST calculations of adsorption selectivity	
13. Iodine capture, release and recyclability	
14.Crystallography data	
15. Reference	

1. Synthesis

Synthesis of AlOC-150

A mixture of aluminum isopropoxide (204 mg, 1 mmol), 3-Aminoisonicotinic acid (210 mg, 1.52 mmol); Iron (III) chloride anhydrous (60 mg, 0.37 mmol), methylamine ethanol solution (40 %, 120 μ L), n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at 120 °C for 4 days. When cooled to room temperature, orange crystals were obtained. (yield: 65 % based on Al(O⁷Pr)₃). The crystals are rinsed with DMF and preserved under a sealed and dry environment. FT-IR (KBr, cm⁻¹): 3453(s), 3074(w), 2958(w), 2850(w), 2706(m), 1661(s), 1597(m), 1490(s), 1252(m), 1047(m), 995(m), 910(s), 754(s) 702(m), 682(m), 630(m), 511(s). Elemental analysis calcd. (%) for Al₈Fe₂Cl₄C₁₀₄N₂₄O₄₃H₁₄₂ (MW 2885.75): C 43.25, N 11.65, H 4.96; found C 45.46, N 13.58, H 5.75.

Synthesis of AlOC-151 - AlOC-154

A mixture of aluminum isopropoxide (204 mg, 1 mmol), isonicotinic acid (120 mg, 1 mmol), Iron (III) chloride anhydrous or Chromium (II) chloride hexahydrate or Nickel (II) chloride hexahydrate or Iron (III) bromide anhydrous (60 mg, 0.37 mmol; 30 mg, 0.13 mmol; 30 mg, 0.25mmol; 90 mg, 0.3 mmol), methylamine ethanol solution (40 %, 120 µL), n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at 100 °C for 4 days. When cooled to room temperature, deep red AlOC-151, light pink AlOC-152, light green AlOC-153 and red crystals AlOC-154 were obtained. The crystals are rinsed with DMF and preserved under a sealed and dry environment. (yield: 53 %; 25 %; 28 %; 36% based on Al(O'Pr)₃). AIOC-151-FT-IR (KBr, cm⁻¹): 2954(w), 2917(w), 2868(w), 2842(w), 1674(m), 1607(s), 1552(s), 1491(s), 1443(s), 1215(w), 1127(w), 1063(m), 997(w) 782(m), 694(m), 562(m). AIOC-152-FT-IR (KBr, cm⁻¹): 3389(w), 3217(w), 2961(w), 2868(w), 1610(s), 1545(s), 1500(m), 1444(s), 1374(s), 1225(w), 1056(m), 1013(w), 858(w) 777(m), 701(m), 557(m). AIOC-153-FT-IR (KBr, cm⁻¹): 3444(s), 2969(w), 1614(s), 1545(s), 1437(w), 1397(w), 1342(w), 1232(w), 1163(w), 1067(w), 873(w), 768(m), 722(w) 693(w). AIOC-154-FT-IR (KBr, cm⁻¹): 3401(s), 2961(m), 2874(w), 1608(s),1542(s), 1501(m), 1449(s), 1223(w), 1064(m), 780(m), 696(m), 563(m). Elemental analysis calcd. (%) for Al₈Fe₃Cl₆C₁₀₄N₁₂O₃₈H₁₃₂ (MW 2754.30): C 45.35, N 6.10, H 4.83; found C 42.24, N 7.91, H 4.67. Elemental analysis calcd. (%) for Al₈Co₃Cl₇C₁₀₈N₈O₃₈H₁₃₂ (MW 2791.06): C 46.48, N 4.01, H 4.77; found C 46.14, N 6.64, H 5.75. Elemental analysis calcd. (%) for Al₈Ni₃Cl₈C₁₀₄N₁₂O₃₆H₁₂₄ (MW 2617.34): C 47.73, N 6.42, H 4.78; found C 45.76, N 7.65, H 4.75. Elemental analysis calcd. (%) for $Al_8Fe_3Br_7C_{104}N_{12}O_{36}H_{124}$ (MW 3057.71): C 40.85, N 5.50, H 4.09; found C 41.73, N 6.63, H 3.33.

Synthesis of AlOC-155

A mixture of aluminum isopropoxide (204 mg, 1 mmol), 3-Chloroisonicotinic acid (240 mg, 1.52 mmol), Iron (III) chloride anhydrous (60 mg, 0.37 mmol), methylamine ethanol solution (40 %, 120 μ L), n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at 100 °C for 4 days. When cooled to room temperature, red crystals were obtained. (yield: 52 % based on Al(O[/]Pr)₃). The crystals are rinsed with DMF and preserved under a sealed and dry environment. AlOC-155-FT-IR (KBr, cm⁻¹): 3433(s), 2955(w), 2880(w), 1666(m), 1628(s), 1481(m), 1597(m), 1443(s), 1330(w), 1275(w), 1157(w), 1099(m), 1055(w) 846(w), 789(m), 673(m), 560(s). Elemental analysis calcd. (%) for Al₈Fe₃Cl₁₉C₁₀₄N₁₂O₃₆H₁₁₂ (MW3162.99): C 39.49, N 5.31, H 3.57; found C 38.60, N 6.85, H 4.01.

X-ray Crystallographic Analyses

Crystallographic data of crystal AIOC-151, AIOC-152, AIOC-154 and AIOC-151' were collected on Hybrid Pixel Array detector equipped with Ga-K α radiation (λ =1.3405 Å) at about 293K, as well as AIOC-150, AIOC-153, AIOC-155, I₂@ AIOC-151, I₂@ AIOC-155, and AIOC-155' was at 100K. The structures were solved with the dual-direct methods using ShelxT and refined with the full-matrix leastsquares technique based on F^2 using the SHELXL.^[2] Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically, riding on the concerned atoms and refined with fixed thermal factors. And n-butyl alcohol molecules are severely disordered and the related hydrogen atoms were not included. All absorption corrections were performed using the multi-scan program. In the crystal data after iodine adsorption, the large peaks of electron density within the pores were identified as iodine. Unfortunately, due to the disorder and poor crystal quality caused by high-temperature iodine steam treatment of the sample, wR₂ value is high, but there is no problem with the crystal data before treatment, so we are confident that the data after iodine adsorption is valid. The obtained crystallographic data are summarized in Table S8-S11.

Reference:

W.-W. Wendlandt, H.-G.Hecht, *Reflectance Spectroscopy*; Interscience: New York, 1966.
G.-M. Sheldrick, *Acta Crystallogr A Found Adv* 2015, **71** (Pt 1), 3-8.

2. The structure information for porous materials

Fig. S1. (a) Traditional approach employing aluminum ions and rigid tetracarboxylic acid ligand.^[1] (b) Perspective view of Al-PMOF linked by meso-tetra(4-carboxyl-phenyl) porphyrin ligand along the [010] direction. (c) Perspective view of Al-PMOF along the [001] direction.

Fig. S2. The edge- and corner-sharing arrangement of the eight octahedral: (a) in CAU-1, (b) in MIL-125. The corner-sharing arrangement of the eight octahedral (c) in FIR-125, (d) in MOF-520. H₃BTB is reduced to benzene for clarity. Color codes: Al, green; Ti, cyan; C, gray; N, blue; O, red.

Compounds	Nodes/linker	Topology/Schläfli symbol	reference
CAU-1	${Al_8(OH)_4(OCH_3)_8}^{12+}$	fcu	[2]
CAU-3	$[Al_{12}(OCH_3)_{24}]^{12+}$	fcu	[3]
CAU-21- BPDC	Al ₈ (OH) ₈ (COO) ₁₆	bcu	[4]
MIL-53	infinite chains of AlO ₄ (OH) ₂ $\xrightarrow{O}_{HO} \xrightarrow{Y}_{X} \xrightarrow{OH}_{OH}$		[5]
MIL-68	infinite chains of $AlO_4(OH)_2$ $\downarrow 0 \qquad $		[6]
MIL-101-NH ₂	$[Al_3O(H_2O)_2(OH)]$	MTN	[7]
Al-PMOF	infinite chains of $AlO_4(OH)_2$ $HOOCC_{e}H_4 \longrightarrow C_{e}H_4COOH^{-1}$ $HOOCC_{e}H_4 \longrightarrow C_{e}H_4COOH^{-1}$	-/-	[1]
MOF-303	$\{AlO_6\}$	xxh	[8]
MOF-519	Al ₈ (OH) ₈ (BTB) ₄ (H ₂ BTB) ₄ S5	sum	[9]

Table S1. The representative 3D frameworks containing aluminum.

	C ₆ H ₄ COOH HOOCC ₆ H ₄ C ₆ H ₄ COOH		
MOF-520	Al ₈ (OH) ₈ (BTB) ₄ (HCOO) ₄ C_6H_4COOH HOOCC ₆ H ₄ C_6H_4COOH	sum	[10]
MOF-523	$\{AIO_6\}$	-/-	[11]
Aloc-81	$Al_{10}(INA)_{10}(OEt)_{20}$	flu	[12]

Table S2. The representative 3D frameworks that form by eight-membered ring.

Compound	The arrangement of eight-	linker	Торо	reference
	membered ring		logy	
Cau-1		XX	fcu	[2]
MOF-519		A		[9]
MOF-520			sum	[10]
CAU-21-BPDC			bcu	[4]
MIL-125		XX	-	[13]

FIJ-125		A A A	bcu	[14]
MIP-207	4986/0400000000000000000000000000000000000		-	[15]
AIOC-150			scu	This work
AIOC-151			ftw	This work

Fig. S3. (a) flexible pseudo-tetracarboxylic acid ligand in **AIOC-150**; (b) rigid metalloporphyrin carboxylic ligands. Color codes: Ti, green; Fe, cyan; C, gray; N, blue; O, red.; Cl, lime.

Fig. S4. (a) The 8-connected Al₈ ring in AIOC-150; (b) the 12-connected Al₈ ring in CAU-1.

Fig. S5. the distance of N…N (a) in PT-cis linkers; (b) in breaking PT linkers.

Fig. S6. (a) octahedral cage; (b) nanotubes (side view); (c) nanotubes (top view) in AlOC-150; (d) octahedral cage; (e) novel basket-type cage; (f) tetragonal cage in AlOC-151. The cage I consist of an octahedral cage containing two neck-and-neck Al₈ rings (13.83 Å × 17.56Å × 8.15 Å) (orange ball), cage Π is a basket-type cage made up of two vertical Al₈ rings (15.69 Å × 18.57Å × 10.63Å) (blue ball), while cage III is a tetragonal cage surrounded by eight Al₈ rings (15.78 Å × 15.78Å × 18.31 Å) (yellow ball). Color codes: Al, green; C, gray; N, blue; O, red.

Fig. S7. (a) *scu* topology for AlOC-150; (b) *ftw* topology for AlOC-151. Color codes: Al, green; C, gray; N, blue; O, red.

Fig. S8. (a) top view; (b) side view of *scu* topology transform to *ftw* topology; (c) the position of N on the IN ligands. The red dotted line represents the connection of the decorated IN ligands. Color codes: Al, green; C, gray; N, blue; O, red.

3. PXRD spectra of porous materials

Fig. S9. Simulated single-crystal PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-150. The first two narrow peaks fused into one broad peak even though the crystals were selected one by one by hand.

Fig. S10. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AlOC-151.

Fig. S11. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-152.

Fig. S12. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-153.

Fig. S13. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-154.

Fig. S14. Simulated PXRD patterns (black) and experimental PXRD patterns (red) of AIOC-155.

4. Massive production.

Fig. S15. Massive production of AlOC-151.

5. Stability of porous materials

Fig. S16. PXRD patterns of AIOC-151 in different organic solvents at room temperature for 24 h.

Fig. S17. PXRD patterns of AIOC-155 in different organic solvents at room temperature for 24 h.

Fig. S18. The Temperature-dependent PXRD patterns of AlOC-151.

Fig. S19. The Temperature-dependent PXRD patterns of AIOC-155.

6. TGA test for porous materials

AIOC-151

Fig. S20. The TGA curve of AIOC-150 to AIOC-155.

The thermal stability of AIOC-150 to AIOC-155 was investigated in N_2 atmosphere up to 800 °C with a heating rate of 10 K min⁻¹, which is presented in Fig. S20. There are similar structures and compositions in AIOC-150 to AIOC-155, so only the TG investigation of AIOC-151 was described in detail. It reveals a weight loss (10%) between 25 and 100 °C and is assigned to the removal of incorporated water from the pores of the framework. Then weight loss (17.3%) around 306 °C can be attributed to the removal of DMF. The third weight loss (32.5%) between 306 and 501 is assigned to the departure of the organic ligand owning to degradation of the structure.

7. EDS spectra of porous materials

Fig. S21. The EDS spectrum of compound AIOC-150.

Fig. S22. The EDS spectrum of compound AIOC-151.

Fig. S23. The EDS spectrum of compound AIOC-152.

Fig. S24. The EDS spectrum of compound AlOC-153.

Fig. S25. The EDS spectrum of compound AIOC-154.

Fig. S26. The EDS spectrum of compound AIOC-155.

8. FT-IR spectra of porous materials

Fig. S27. IR spectrum of AlOC-150.

Fig. S28. IR spectrum of AlOC-151.

Fig. S29. IR spectrum of AIOC-152.

The IR spectra of AlOC-150 to AlOC-155 have been recorded in the range of 4000–400 cm⁻¹ from solid samples palletized with KBr, which are presented in Fig. S27-S32. In the functional group region (v > 1300 cm⁻¹), the weak absorption bands at 3087–3063 cm⁻¹ are observed, which can be ascribed to the stretching vibration modes of C–H bonds in pyridine rings. On the other hand, the aliphatic C-H stretching-vibrations of the n-butanol oxygen group occur about 3000-2800 cm⁻¹. Moreover, the asymmetric stretching vibration (v_{as}) and symmetric stretching vibration (v_s) of the carboxylate group can be clearly attributed, namely, the band at 1610–1560 cm⁻¹ is assigned to the v_{as} (CO₂⁻) whilst the signal at 1440–1360 cm⁻¹ is ascribed to the v_s (CO₂⁻). In the fingerprint region (1300cm⁻¹>v > 400 cm⁻¹). The incorporation of 3-Chloroisonicotinic acid in AlOC-155 is supported by the C-Cl vibrations at 670 cm⁻¹. The typical bands for the NH₂ group at 3497 and 3385 cm⁻¹ are not observed in the AlOC-150 owing to the presence of N-H···O hydrogen bonding.

9. Determination of the valence state of metals

		55 ICI analysis for por	ous materiais.	
		AIOC-151	AIOC-152	AIOC-153
Wt%	Exp.	Al:6.11%	Al:6.85%	Al:6.09%
		Fe:4.13%	Co:4.77%	Ni:4.57%
	Cal.	Al:7.98%	Al:7.74%	Al:8.40%
		Fe:6.19%	Co:6.34%	Ni:6.85%
Al:M	Exp.	3.0628:1	3.1366:1	2.8989:1
	Cal.	2.6657:1	2.6665:1	2.6676:1

Table S3 ICP analysis for porous materials.

(M=Fe for AlOC-151; Co for AlOC-152; Ni for AlOC-153)

Table S4 BVS analysis for porous materials.

BVS Value	Bond d	istance	BVS Value	Bond d	istance
Al01	Al01-O1	1.906	A102	Al02-O3	1.952
3.1602	Al01-O1 ¹	1.906	3.1197	Al02-O41	1.873
	Al01-O2	1.942		Al02-04	1.873
	Al01-O41	1.87		A102-O6	1.8507
	Al01-O4	1.87		Al02-07	1.909
	Al01-O5	1.8436		Al02-O71	1.909
Fe01	Fe01-N1	2.233	Fe02	Fe02-N37	2.256
1.9819	Fe01-N1 ⁶	2.233	1.8938	Fe02-N3	2.256
	Fe01-N2	2.235		Fe02-N3 ⁸	2.256
	Fe01-N2 ⁶	2.235		Fe02-N3 ⁹	2.256
	Fe01-Cl06	2.436		Fe02-C105	2.444
	Fe01-Cl06	2.436		Fe02-Cl05	2.444

BVS analysis for AlOC-151

System code: ¹3/2-Y, 3/2-X, +Z; ⁶+X, +Y, 1-Z; ⁷2-Y, +X, +Z; ⁸2-X, 2-Y, 2-Z; ⁹+Y,2-X,2-Z.

BVS Value	Bond d	listance	BVS Value	Bond d	listance
A103	Al03-000B	1.844	A104	A104-000A	1.952
3.1657	A103-O00C	1.865m	3.1917	A104-000C	1.873
	A103-O00D	1.896		A104-O00F	1.873
	A103-O00E	1.949		A104-000G	1.8507
	Al03-O00I ¹	1.912		A104-O00H ²	1.909
	A103-O009	1.869		A104-O009	1.909
Co01	Co01-Cl05	2.502			
2.1288	Co01-Cl06	2.475			
	Co01-Cl07	2.447			
	Co01-N1 ³	2.163			
	Co01-N1 ⁴	2.163			
	Co01-N00Z	2.146			

BVS analysis for AIOC-152.

System code: ²1-X, 1-Y, +Z; ³-1/2+X, 3/2-Y, 2-Z; ⁴-1/2+Y, 3/2-X, +Z.

BVS Value Bond distance **BVS** Value Bond distance Al01-05 Al02-04 Al01 1.838 Al02 1.87 3.2132 3.0434 Al01-O47 1.861 Al02-O47 1.87 Al01-O4 1.861 Al02-O3 1.942 Al01-O1 1.899 Al02-O37 1.942 Al01-O17 1.899 Al02-07 1.898 Al01-O2 1.944 Al02-O77 1.898 Ni00 Ni00-Cl08 Ni01 2.418 Ni01-Cl1 2.503 2.2455 2.0318 Ni00- Cl081 Ni01-Cl07 2.418 2.479 Ni00-N0I 2.064 Ni02-N3 2.120 Ni00-N0N² 2.075 Ni02-N0x² 2.120 Ni00-N0T³ Ni02-N0x⁵ 2.11 2.120 2.147 Ni00-N0114 Ni02-N0x⁶ 2.120

BVS analysis for AlOC-153

System code: ¹1/2+Y, -1/2+X, 2-Z; ²1-Y, +X, +Z; ³1-Y, +X, 2-Z; ⁴+X, +Y, 2-Z; ⁵1-X, 1-Y, 1-Z; ⁶+Y, 1-X, 1-Z; ⁷1/2+Y, -1/2+X, +Z;

Fig. S33. High-resolution spectrum of Fe 2p for AlOC-151.

Fig. S34. High-resolution spectrum of Co 2p for AlOC-152.

Fig. S35. High-resolution spectrum of Ni 2p for AlOC-153.

10. Single-component gas sorption measurement

The gas adsorption isotherms were generated on ASAP 2020 volumetric adsorption equipment. The fresh crystal samples were solvent-exchanged with methanol for AIOC-151, ethanol for AIOC-155 at least 10 times within three days to make sure that the guest solvents were removed. Then the samples were evacuated at 353K for 6 h for AIOC-151, instead of at 373K for AIOC-155. The sorption measurement was maintained at 77K 273K and 298K under liquid nitrogen, ice slurry and water, respectively.

Figure S36. PXRD patterns of AIOC-151 after methanol exchange and vacuum activation.

Fig. S37. N₂ isotherm at 77 K of AlOC-151 after solvent with methanol.

Fig. S38. N_2 isotherm at 77 K of AlOC-155 after solvent with ethanol.

Fig. S39. CO_2 adsorption isotherm at 298 K and 273 K of AlOC-151 and AlOC-155. The overall adsorption effect of AlOC-155 is better than that of AlOC-151.

Fig. S40. Light hydrocarbon (CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆ and C₃H₈) adsorption isotherms of AIOC-151 at 273 K.

11. Isosteric heat of gas adsorption

The Clausius-Clapeyron equation was employed to calculate the enthalpies of CO_2 adsorption for AlOC-151, a_i and b_i are parameters which are independent of temperature:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i \sum_{i=0}^{n} b_i N^i$$

Where p is pressure, N is the amount of uptake, T is the temperature and m and n the number of terms required to adequately describe the isotherm.

$$Q_{st} = -\mathbf{R}^{i} = 0$$

Where *R* is the universal gas constant. The coverage dependencies of Q_{st} values were calculated from fitting the adsorption data at different temperatures for AIOC-151.

Fig. S41. The isosteric heat of CO_2 adsorption for AIOC-151 is estimated by the virial equation (left); The CO_2 sorption isotherms for AIOC-151 fitting by the virial method (right).

12. IAST calculations of adsorption selectivity

In order to evaluate the separation effect of AIOC-151 on binary mixed-light alkanes, the single-component adsorption isotherms of light alkanes were calculated based on the dual-site Langmuir-Freundlich (DSLF) model. Gas selectivity of mixed C_3H_8/CH_4 (50/50, v/v) and C_3H_6/CH_4 (50/50, v/v) at 298 K were carried out using the ideal adsorbed solution theory (IAST).

$$A_{1} \frac{b_{1} P^{c_{1}}}{1 + b_{1} P^{c_{1}}} A_{2} \frac{b_{2} P^{c_{2}}}{1 + b_{2} P^{c_{2}}}$$

where P (unit: kPa) is the pressure of the bulk gas at equilibrium with the adsorbed phase, N (unit: mol/kg) is the adsorbed amount per mass of adsorbent, A_1 and A_2 (unit: mmol/g) are the saturation capacities of two different sites, b_1 and b_2 (unit: 1/kPa) is the affinity coefficients of these sites, and c_1 and c_2 represent the deviations from an ideal homogeneous surface.

Fig. S42. the IAST selectivity of $50/50 \text{ }C_3\text{H}_8/\text{CH}_4$ and $50/50 \text{ }C_3\text{H}_6/\text{CH}_4$ for AlOC-151 at 298 K, 1 bar.

13. Iodine capture, release and recyclability

Fig. S43. Comparison of Roman spectrum of AIOC-151 before and after iodine adsorption.

Fig. S44. Comparison of Roman spectrum of AIOC-155 before and after iodine adsorption (collected with an excitation line of 532 nm at 10% laser power).

Fig. S45. The high-resolution spectrum of 3d I for I_2 @AlOC-151.

Fig. S46. The high-resolution spectrum of 3d I for $I_2 @AIOC-155.$

Fig. S47. EDS-mapping spectra of I_2 @AlOC-151. From left to right are crystal appearance, aluminum, iron, chlorine and iodine elements.

Figure S48. EDS-mapping spectra of I_2 (AlOC-155. From left to right are crystal appearance, aluminum, iron, chlorine and iodine elements.

Fig. S49. PXRD patterns of AIOC-151 after iodine adsorption and release with methanol.

Fig. S50. PXRD patterns of AIOC-155 after iodine adsorption and release with ethanol.

Fig. S51 the SEM imagines before (left) and after (right) iodine adsorption.

Fig. S52. FT-IR spectra of AlOC-151 before and after iodine adsorption. the characteristic peak at \sim 2967.7 cm⁻¹ assigned to the C-H on pyridine ring stretching vibration blue shift.

Fig. S53. FT-IR spectra of AIOC-151 and release with methanol. The absorption peak was restored after release.

Fig. S54. FT-IR spectra of AlOC-155 before and after iodine adsorption. the characteristic peak at \sim 673.1 cm⁻¹ assigned to the C-Cl on pyridine ring stretching vibration red shift.

Fig. S55. FT-IR spectra of AIOC-155 and after release with ethanol. The absorption peak was restored after release.

Fig. S56. I-V curves of pristine AlOC-151 and I_2 @AlOC-151.

Table S5. BVS analysis of Fe atoms after iodine adsorption.

Fe1	Fe1-Cl1	2.279	Fe2	Fe2-Cl2 ¹	2.313
2.5777	Fe1-Cl1 ¹	2.279	2.4365	Fe2-Cl2	2.314
	Fe1-N1	2.203		Fe2-N2 ²	2.187
	Fe1-N1 ⁵	2.203		Fe2-N2	2.187
	Fe1-N00s	2.151		Fe2-N2 ³	2.187
	Fe1-N00s ⁵	2.151		Fe2-N2 ¹	2.187

BVS analysis for I2@AlOC-151

System code:11-X, 1-Y, -Z; 2+Y, 1-X, -Z; 31-Y, +X, +Z; 5+X, +Y, 1-Z;

BVS analysis for I2@AIOC-155

Fe0	Fe00-C106	2.387	Fe1	Fe1-Cl05	2.429
2.3779	Fe00-Cl06 ¹	2.387	2.3521	Fe1-Cl05 ⁵	2.429
	Fe00-N0F ²	2.203		Fe1-N0H ⁶	2.244
	Fe00- N0F ³	2.203		Fe1- N0H	2.244
	Fe00-N0G	2.218		Fe1- N0H ³	2.244
	Fe00-N0G ⁴	2.218		Fe1- N0H ⁷	2.244

System code: ¹-1/2+Y, 1/2+X, 1-Z; ²1-Y, +X, 1-Z; ³1-Y, +X, +Z; ⁴+X, +Y, 1-Z; ⁵1-X, 1-Y, 2-Z; ⁶+X, +Y, 2-Z; ⁷+Y, 1-X, 2-Z;

Fig. S57. UV visible spectra of I_2 @AIOC-151 (black line) and I_2 @AIOC-155 (red line); upper right inset: UV visible spectra of AIOC-151 and AIOC-155; lower left inset: photographs showing the visible color change when AIOC-151 were exposed to I_2 vapor.

Fig. S58 a) O-H···I interaction and b) the bond length in adsorption site I of I_2 @AlOC-151. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S59 C-H···I interaction and the bond length in adsorption site II of $I_2@AIOC-151$. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S60 O-H···I interaction and (b) the bond length in adsorption site I of I_2 @AlOC-155. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S61 C-Cl···I interaction and the bond length in adsorption site II of I_2 @AlOC-155. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S62 C-Cl···I, C-H···I interaction and the bond length in adsorption site III of $I_2@AIOC-155$. (Color codes: Al, green; Fe, cyan; C, gray; N, blue; O, red. I, pink. Some n-butanol and isonicotinic acid rings are omitted for clarity.

Fig. S63 the Adsorption capacity of porous materials at 80 °C in saturated iodine vapor with 0% RH and 18% RH.

Fig. S64 (a) the photos of Crystal color changes of AlOC-151 before and after methanol release; (b) photos of the I_2 -released process of I_2 @AlOC-151 soaked in methanol; (c) temporal evolution absorbance for the I_2 released from methanol; (d) three times cycle experimental of AlOC-151.

14.Crystallography data

	AlOC-151	I ₂ @AlOC-151	Aloc-151-1
Crystal system	tetragonal	tetragonal	tetragonal
Space group	P4/mbm	P4/mbm	P4/mbm
a [Å]	22.1660(2)	22.0217(4)	22.1414(2)
b [Å]	22.1660(2)	22.0217(4)	22.1414(2)
c [Å]	18.5421(3)	18.4702(5)	18.5120(2)
α [°]	90	90	90
β [°]	90	90	90
γ [°]	90	90	90
V [Å ³]	9110.3(2)	8957.2(4)	9075.35(19)
$R_1, wR_2 [I \ge 2\sigma(I)]$	0.0751, 0.2467	0.2154, 0.5111	0.0712, 0.2322
R_1 , w R_2 [all data]	0.0853, 0.2587	0.2259, 0.5195	0.0820, 0.2434

Table S6. Comparison of parameters for AIOC-151 before and after iodine adsorption and release.

Table S7. Comparison of parameters for AIOC-155 before and after iodine adsorption and release.

	Aloc-155	I ₂ @AlOC-155	Aloc-155-1
Crystal system	tetragonal	tetragonal	tetragonal
Space group	P4/mbm	P4/mbm	P4/mbm
a [Å]	22.1208(2)	22.1507(10)	22.0492(3)
b [Å]	22.1208(2)	22.1507(10)	22.0492(3)
c [Å]	18.5119(2)	18.5030(2)	18.4944(3)
α [°]	90	90	90
β[°]	90	90	90
γ [°]	90	90	90
V [Å ³]	9058.42(19)	9078.56(13)	8991.4(3)
$R_1, wR_2 \left[I \!\!>\!\! 2\sigma(I)\right]$	0.0954, 0.2685	0.1844, 0.4761	0.0832, 0.2482
R ₁ , wR ₂ [all data]	0.1111, 0.2829	0.2025, 0.4934	0.0922, 0.2606

	AlOC-150	Aloc-151	Aloc-152
Empirical formula	$Al_8Fe_2Cl_4C_{104}N_{24}O_{43}H_{142}$	$Al_8Fe_3Cl_6C_{104}N_{12}O_{38}H_{132}$	$Al_8Co_3Cl_7C_{108}N_8O_{38}H_{132}$
Formula weight	2885.75	2754.30	2791.06
Temperature / k	100.01(10)	293(2)	293(2)
Crystal system	tetragonal	tetragonal	tetragonal
Space group	P4/nbm	P4/mbm	P4/mbm
a [Å]	27.5493(2)	22.1660(2)	21.99545(17)
b [Å]	27.5493(2)	22.1660(2)	21.99545(17)
c [Å]	12.87900(10)	18.5421(3)	18.3985(2)
α [°]	90	90	90
β[°]	90	90	90
γ [°]	90	90	90
V [Å ³]	9774.70(16)	9110.3(2)	8901.23(17)
Z	2	2	2
$\rho_{calcd} \left[g \ cm^{-3}\right]$	0.980	1.004	1.041
μ [mm ⁻¹]	2.566	2.406	2.730
F (000)	3004.0	2856.0	2888.0
	$-34 \le h \le 34$	$-27 \le h \le 16$	$-28 \le h \le 28$
Index ranges	$-25 \le k \le 30$	$-13 \le k \le 28$	$-14 \le k \le 28$
	$-7 \le l \le 15$	$-24 \le 1 \le 23$	$-23 \le l \le 23$
Reflections collected	30845	35007	35955
Independent refs [R _{int}]	5141 [0.0280]	5506 [0.0338]	5379 [0.0248]
date/restraints/parameters	5141/84/276	5506/21/239	5379/6/274
Goodness-of-fit on F ²	1.384	1.064	1.074
$R_1, wR_2[I \!\!>\!\! 2\sigma(I)]$	0.0926, 0.2924	0.0751, 0.2467	0.0769, 0.2549
R_1 , w R_2 [all data]	0.1019, 0.0.3110	0.0853, 0.2587	0.0797, 0.2591

Table S8. Experimental single-crystal X-ray data for AIOC-150, AIOC-151 and AIOC-152.

	AlOC-153	Aloc-154	AlOC-155
Empirical formula	Al ₈ Ni ₃ Cl ₈ C ₁₀₄ N ₁₂ O ₃₆ H ₁₂₄	$Al_8Fe_3Br_7C_{104}N_{12}O_{36}H_{124}$	$Al_8Fe_3Cl_{19}C_{104}N_{12}O_{36}H_{112}$
Formula weight	2617.34	3057.71	3162.99
Temperature / k	100.00(10)	100.00(10)	100.00(10)
Crystal system	tetragonal	tetragonal	tetragonal
Space group	P4bm	P4/mbm	P4/mbm
a [Å]	21.8334(3)	22.0664(10)	22.1208(2)
b [Å]	21.8334(3)	22.0664(10)	22.1208(2)
c [Å]	18.3026(5)	18.4584(3)	18.5119(2)
α[°]	90	90	90
β [°]	90	90	90
γ [°]	90	90	90
V [Å ³]	8724.8(3)	8987.88(9)	9058.42(19)
Ζ	2	2	2
$\rho_{calcd} \left[g \ cm^{-3} \right]$	0.996	1.130	1.160
μ [mm ⁻¹]	3.062	3.088	3.606
F (000)	2680.0	3091.0	3226.0
	$-24 {\leq} h {\leq} 25$	$-27 \le h \le 28$	$-25 \le h \le 20$
Index ranges	$-19 \le k \le 28$	$-24 \le k \le 28$	$-28 \le k \le 27$
	$-23 \le 1 \le 18$	$-23 \le l \le 12$	$-23 \le l \le 23$
Reflections	31843	31137	32144
collected			
Independent refs $[R_{int}]$	8869[0.0761]	5407 [0.0273]	5430 [0.0411]
date/restraints/parameter	rs 8869/220/490	5407/355/282	5430/48/332
Goodness-of-fit on F ²	1.008	1.297	1.092
$R_1, wR_2[I \ge 2\sigma(I)]$	0.0883, 0.2402	0.0851, 0.2800	0.0954, 0.2685
R_1 , w R_2 [all data]	0.1246, 0.2714	0.0908, 0.2879	0.1111, 0.2829

Table S9. Experimental single crystal X-ray data for AIOC-153, AIOC-154 and AIOC-155.

	I ₂ @AlOC-151	I ₂ @AlOC-155
Empirical formula	$Al_8Fe_3Cl_6C_{100}N_{12}O_{36}H_{120}I_{5.5}$	$Al_8Fe_3Cl_{18}C_{104}N_{12}O_{36}H_{116}I_{3.2}$
Formula weight	3360.11	3545.75
Temperature / k	100.01(12)	100.00(10)
Crystal system	tetragonal	tetragonal
Space group	P4/mbm	P4/mbm
a [Å]	22.0217(4)	22.1507(10)
b [Å]	22.0217(4)	22.1507(10)
c [Å]	18.4702(5)	18.5030(2)
α [•]	90	90
β [°]	90	90
γ [°]	90	90
V [Å ³]	8957.2(4)	9078.56(13)
Ζ	2	2
pcalcd [g cm ⁻³]	1.246	1.297
μ [mm ⁻¹]	11.056	7.882
F (000)	3335.0	3490.0
	$-25 {\leq} h {\leq} 25$	$-25 \le h \le 28$
Index ranges	$-26 \le k \le 26$	$-23 \le k \le 28$
	$-22 \le 1 \le 18$	$-23 \le 1 \le 23$
Reflections collected	25354	32712
Independent refs [Rint]	4642[0.0902]	5441 [0.0534]
date/restraints/parameters	4642/108/310	5541/127/357
Goodness-of-fit on F ²	2.286	2.303
R_1 , wR_2 [I>2 σ (I)]	0.2154, 0.5111	0.1844, 0.4761
R_1 , w R_2 [all data]	0.2259, 0.5195	0.2025, 0.4934

Table S10. Experimental single-crystal X-ray data for $I_2@AlOC-151$ and $I_2@AlOC-155$.

	Aloc-151-1	Aloc-155-1
Empirical formula	$Al_8Fe_3Cl_7C_{104}N_{12}O_{36}H_{120}$	$Al_8Fe_3Cl_{19}C_{104}N_{12}O_{36}H_{112}$
Formula weight	2609.26	3162.99
Temperature / k	293(2)	100.01(10)
Crystal system	tetragonal	tetragonal
Space group	P4/mbm	P4/mbm
a [Å]	22.1414(2)	22.0492(3)
b [Å]	22.1414(2)	22.0492(3)
c [Å]	18.5120(2)	18.4944(3)
α [°]	90	90
β [°]	90	90
γ [°]	90	90
V [Å ³]	9075.35(19)	8991.4(3)
Ζ	2	2
pcalcd [g cm ⁻³]	0.955	1.168
μ [mm ⁻¹]	2.488	3.632
F (000)	2658.0	3226.0
	$-19 {\leq} h {\leq} 26$	$-25 \le h \le 25$
Index ranges	$-27 \leq k \leq 28$	$-25 \le k \le 23$
	$-23 \le 1 \le 20$	$-21 \le 1 \le 21$
Reflections collected	31143	28983
Independent refs [Rint]	5539[0.0349]	4092 [0.0409]
date/restraints/parameters	5539/55/268	4092/49/323
Goodness-of-fit on F ²	1.041	1.032
R_1 , w R_2 [I>2 σ (I)]	0.0712, 0.2322	0.0832, 0.2482
R_1 , w R_2 [all data]	0.0820, 0.2434	0.0922, 0.2606

Table S11. Experimental single-crystal X-ray data for AIOC-151' and AIOC-155'.

15. Reference

- A. Fateeva, P.-A. Chater, C.-P. Ireland, A.-A. Tahir, Y.-Z. Khimyak, P.-V. Wiper, J.-R. Darwent, M.-J. Rosseinsky, *Angew. Chem. Int. Ed.* 2012, **51**, 7440-7444.
- [2] T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Ferey, J. Senker, N. Stock, Angew. Chem. Int. Ed. 2009, 48, 5163-5166.
- [3] H. Reinsch, M. Feyand, T. Ahnfeldt, N. Stock, Dalton Trans. 2012, 41, 4164-4171.
- [4] M. Kruger, A.-K. Inge, H. Reinsch, Y.-H. Li, M. Wahiduzzaman, C.-H. Lin, S.-L. Wang, G. Maurin, N. Stock, *Inorg. Chem.* 2017, 56, 5851-5862.
- [5] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, *Chem. Eur. J.* 2004, **10**, 1373-1382.
- [6] H. Embrechts, M. Kriesten, M. Ermer, W. Peukert, M. Hartmann, M. Distaso, RSC Adv. 2020, 10, 7336-7348.
- [7] P. Serra-Crespo, E.-V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 2011, 23, 2565-2572.
- [8] N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, O. M. Yaghi, *Science* 2021, 374, 454–459
- [9] F. Gandara, H. Furukawa, S. Lee, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 5271-5274.
- [10] S. Lee, E.-A. Kapustin, O. M. Yaghi, Science 2016, 353, 808-811.
- [11] E.-D. Bloch, D. Britt, C. Lee, C.-J. Doonan, F.-J. Uribe-Romo, H. Furukawa, J.-R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382–14384.
- [12] L. Geng, C.-H. Liu, S.-T. Wang, W.-H. Fang, J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 16735-16740.
- [13] M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Ferey, J. Am. Chem. Soc. 2009, 131, 10857-10859.
- [14] Y.-Y. Sun, D.-F. Lu, Y.-X. Sun, M.-Y. Gao, N. Zheng, C. Gu, F. Wang, J. Zhang, ACS Mater. Lett. 2020, 3, 64-68.
- [15] S. Wang, H. Reinsch, N. Heymans, M. Wahiduzzaman, C. Martineau-Corcos, G.-De Weireld, G. Maurin, C. Serre, *Matter* 2020, 2, 1-11.