Structural and theoretical insights into solvent effects in an iron (III) SCO complex

Raúl Díaz-Torres,^{a+} Theerapoom Boonprab,^a Silvia Gómez-Coca,^b Eliseo

Ruiz,^b Guillaume Chastanet,^c Phimphaka Harding^a and David J. Harding^{*a}

^a Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand.

 ^b Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

^c Université de Bordeaux, ICMCB, 87 avenue du Dr A. Schweitzer, Pessac, F-33608, France.

+ Now at Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand

E-mail: hdavid@mail.wu.ac.th or kphimpha@mail.wu.ac.th

Contents

Page

	No.
Table S1: Selected Fe-N/O bond length (Å), volume cell (Å ³) and octahedral distortion parameters	
at various temperatures for all compounds.	4
Table S2: Crystallographic data and structure refinement of all compounds.	6
Table S3: Intermolecular interactions of all compounds (Å).	8
Table S4: Distances between the chains (d_{chain}) and the planes (d_{plane}) at different temperatures	11
Figure S1: Experimental PXRD diffractograms (blue) and the corresponding simulated patterns	
(red) for 1-3 .	12
Figure S2: Structure representation of the 2D supramolecular interactions connecting the chains	
of Fe(III) for 1 (above) and 2 (below) at 150 K.	13
Figure S3: Structure representation of the 3D structure connecting the planes by nitrate	
molecules for 1 (above), 2 (middle) and 3 (below) at 150 K.	15
Figure S4: Structure representation of the 3D structure for 2ns with layers end on view (top) and	
layers side on view (bottom) for 2ns at 200 K.	16
Figure S5: Structure representation of the 3D structure for 2ns with plane A to plane A	
interactions and plane A to plane B interactions at 200 K.	17
Figure S6: Structure representation of the 3D structure connecting the planes by π - π interactions	
for 2ns at 200 K.	18
Table S5: Intermolecular interactions contributions for 1-2 calculated by Hirshfeld surface at	
different temperatures.	18
Figure S7: Hirshfeld surface mapped with d_{norm} (left) and 2D fingerprint of all contacts and O…H	
interactions for 1, 2 and 2n.	19
Figure S8: TGA curves for 1-3 , with the assigned mass losses.	20
Figure S9: Experimental PXRD diffractogram of ${f 1}$ after heating at 350 K and the corresponding	
simulated patterns of solvated complex 1 and 2ns (non-solvated).	21
Figure S10: Experimental PXRD diffractogram of 2 after heating at 350 K and the corresponding	
simulated patterns of solvated complex 2 and 2ns (non-solvated).	22
Figure S11: Experimental PXRD diffractogram of 3 after heating at 350 K and 480 K, and the	
corresponding simulated patterns of solvated complex 3 and 2ns (non-solvated).	23
Figure S12: Thermal variation of $\chi_M T$ versus T plots for 3 at different cycles.	24

Figure S13: Thermal variation of $\chi_M T$ versus T plots for 1 at different cycles.	24
Figure S14: Thermal variation of $\chi_M T$ versus T plots for 1 and 3 at the 2 nd cycle.	25
Figure S15: Thermal variation of $\chi_M T$ versus T plots for 2 at different cycles.	25
Table S6: Comparison of DFT optimized and experimental (in parenthesis) average bond lengths	
(Å) and volume cells (Å ³) for the low- and high- spin states for compounds 1 and 2 .	26
Figure S16: Unit cell of the optimized structures of 1 with [4HS], [3HS-1LS], [4LS] and [3LS-1HS].	27
Figure S17: Unit cell of the optimized structures of 2 with [4HS], [3HS-1LS], [4LS] and [3LS-1HS].	28
Figure S18: Unit cell of the optimized structures of 2ps with [4HS], [3HS-1LS], [4LS] and [3LS-1HS].	29
Figure S19: Unit cell of the optimized structures of 2ns with [4HS], [3HS-1LS], [4LS] and [3LS-1HS].	30

		1	2			3
	[Fe(qsal-Cl	Fe(qsal-Cl) ₂]NO ₃ ·MeOH		[])2]NO3∙EtOH	[Fe(qsal-C	I)₂]NO₃·1-PrOH
	150 K	280 K	150 K	280 K	150 K	280 K
Fe1-O1ph	1.880(2)	1.871(2)	1.885(5)	1.905(3)	1.858(2)	1.860(2)
Fe1-O2ph	1.868(2)	1.863(2)	1.885(5)	1.903(3)	1.883(2)	1.879(2)
Fe1-Oph _{av}	1.874	1.867	1.885	1.904	1.870	1.869
Fe1-N1quin	1.969(2)	1.968	1.996(5)	2.126(3)	1.982(2)	1.983(2)
Fe1-N2im	1.936(2)	1.933	1.965(5)	2.108(3)	1.956(3)	1.945(3)
Fe1-N3quin	1.968(2)	1.970	1.980(5)	2.143(3)	1.975(3)	1.995(2)
Fe1-N4im	1.940(2)	1.925	1.960(5)	2.104(3)	1.941(3)	1.962(3)
Fe1-Nav	1.953	1.949	1.975	2.120	1.963	1.971
Fe2-O3ph	1.884(2)	1.894	-	-	-	-
Fe2-O4ph	1.869(2)	1.882	-	-	-	-
Fe2-Oph _{av}	1.876	1.888	-	-	-	-
Fe2-N5quin	1.994(10)	2.076	-	-	-	-
Fe2-N6im	1.944(3)	2.041	-	-	-	-
Fe2-N7quin	1.983(9)	2.069	-	-	-	-
Fe2-N8im	1.937(3)	2.040	-	-	-	-
Fe2-Nav	1.964	2.056	-	-	-	-
V / ų	2984	3065	3034	3125	6296	6428
Σ-Fe1, Fe2	46, 51	46, 52	50	69	51	51
Θ-Fe1, Fe2	114, 155	117, 181	135	225	134	135

Table S1 Selected Fe-N/O bond length (Å), volume cell (Å³) and octahedral distortion parameters at various temperatures for all compounds.

	2ns						
	[Fe(qsal-Cl) ₂]NO ₃						
	360 K	320 K	200 K				
Fe1-O1ph	1.905(2)	1.888(2)	1.882(2)				
Fe1-O2ph	1.891(2)	1.871(2)	1.870(1)				
Fe1-Oph _{av}	1.898	1.879	1.876				
Fe1-N1quin	2.116(2)	2.024(2)	1.970(2)				
Fe1-N2im	2.083(3)	1.993(2)	1.948(2)				
Fe1-N3quin	2.117(2)	2.026(2)	1.981(2)				
Fe1-N4im	2.081(3)	1.991(2)	1.947(2)				
Fe1-Nav	2.100	2.001	1.961				
V / ų	2854	2816	2761				
Σ-Fe1	62	47	48				
Θ-Fe1	193	137	123				

	1 [Fe(qsal-Cl)	₂]NO₃·MeOH	2 [Fe(qsal-Cl)₂]NO₃·EtOH	3 [Fe(qsal-Cl)	₂]NO₃·1-PrOH
	150 K	280 K	150 K	280 K	150 K	280 K
Empirical formula	$C_{33}H_{24}Cl_2FeN_5O_6$	$C_{33}H_{24}Cl_2FeN_5O_6$	$C_{34}H_{26}Cl_2FeN_5O_6$	$C_{34}H_{26}Cl_2FeN_5O_6$	$C_{35}Cl_2FeH_{28}N_5O_6$	$C_{35}Cl_2FeH_{28}N_5O_6$
Formula weight/ gmol ⁻¹	713.32	713.32	727.366	727.366	741.37	741.37
Crystal system	triclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	ΡĪ	РĪ	P21/c	P21/c	I2/a	I2/a
a / Å	10.27985(17)	10.27045(20)	9.7517(2)	9.86853(18)	19.1751(3)	19.3217(2)
b / Å	12.74528(15)	12.7798(2)	25.8966(4)	25.6178(4)	11.0201(2)	11.0517(2)
c / Å	23.5809(3)	24.3948(4)	12.1742(1)	12.45218(18)	29.7982(5)	30.1028(5)
α/°	94.8650(10)	96.6399(13)	90	90	90	90
β/°	99.1577(12)	100.2941(14)	99.275(1)	96.8585(16)	90.4220(10)	90.3700(10)
γ/°	99.9168(12)	100.1584(16)	90	90	90	90
v	2984.54(7)	3064.99(9)	3034.23(8)	3125.52(9)	6296.53(18)	6427.95(17)
Z	4	4	4	4	8	8
Absorption coefficient /	6.185	6.023	6.096	5.918	5.887	5.767
mm ⁻¹						
Reflections collected	46286	34803	23307	49448	24396	25999
Independent reflections,	10931, 0.0642	7701, 0.1016	5553, 0.0509	5694, 0.0598	5757, 0.0381	5880, 0.0282
Rint						
Max. and min.	-	-	-	-	-	-
transmission						
Restrains/parameters	70/1070	36/851	21/474	6/415	21/417	20/417
Final R indices [I>=2σ (I)]	0.0480	0.0618	0.0729	0.0738	0.0568	0.0560
R ₁ , wR ₂	0.1287	0.1687	0.2040	0.1978	0.1584	0.1747
CCDC No.	2175688	2175687	2175689	2175690	2175691	2175692

 Table S2 Crystallographic data and structure refinement of all compounds.

	2ns [Fe(qsal-Cl)₂]NO ₃					
	360 K	320 K	200 K			
Empirical formula	$C_{32}H_{20}Cl_2FeN_5O_5$	$C_{32}H_{20}Cl_2FeN_5O_5$	$C_{32}H_{20}Cl_2FeN_5O_5$			
Formula weight/ gmol ⁻¹	681.28	681.28	681.28			
Crystal system	monoclinic	monoclinic	monoclinic			
Space group	P21/n	P21/n	P21/n			
a / Å	13.6679(2)	13.3494(3)	13.13396(19)			
b / Å	15.2712(2)	15.3915(3)	15.36840(17)			
c / Å	14.5271(2)	14.4332(3)	14.35516(19)			
α/°	90	90	90			
β/°	109.7236(19)	108.239(2)	107.6913(15)			
γ/°	90	90	90			
V	2854.28(8)	2816.56(10)	2760.52(7)			
Z	4	4	4			
Absorption coefficient /	6.412	6.498	6.630			
mm ⁻¹						
Reflections collected	22988	21258	21967			
Independent reflections,	5307	5240	0.0443			
Rint	0.0473	0.0509				
Max. and min.	0.853	1.000	0.708			
transmission	0.573	0.514	0.537			
Restrains/parameters	18/406	18/406	0/406			
Final R indices [I>=2σ (I)]	0.0496	0.0435	0.0371			
R 1, wR 2	0.1435	0.1108	0.1009			
CCDC No.	2175695	2175693	2175694			

Table S3 Intermolecular interactions of all compounds (Å).

		1		2		3		
		[Fe(qsal-Cl)	₂]NO₃∙MeOH	[Fe(qsal-Cl)₂]NO₃·EtOH	[Fe(qsal-Cl) ₂]NO₃·1-PrOH	
		150 K	280 K	150 K	280 K	150 K	280 K	
1D chains								
Fe-Fe								
	π-π (Type A – Fe1-Fe1)	3.295	3.259	3.363	3.386	3.373	3.345	
	π-π (Type B – Fe2-Fe2)	3.221	3.368	-	-	-	-	
	π-π (Type C – Fe1-Fe2)	3.339	3.293	-	-	-	-	
	C-H…O	2.484	2.616	2.467	2.457	-	-	
	C-H…O	2.645	2.722	2.580	2.703	-	-	
	C-H…Cl	2.869	2.904	-	-	3.281	3.296	
	Fe-Fe (Type A)	6.856	6.926	7.161	7.044	7.011	7.061	
	Fe-Fe (Type B)	7.774	7.654	6.984	7.044	10.330	9.368	
ROH	OH _e …C-H	2.539	2.681	2.704	**	**	**	
	OHe…ON	2.159	2.501	2.051	**	**	**	
NO ₃	О…С-Н	2.516	2.675	2.576	2.592	2.549	2.601*	
2D plane								
	π-π	3.484	3.471*	-	-	-	-	
	C-H···Cl	3.098	3.073	3.017	3.061	3.275	3.285	
	O…Cl	3.114	3.229	-	-	-	-	
	P4AE (CH…C _{centroid})	-	-	-	-	2.830	2.909	
	P4AE (π-π, quin-quin)	-	-	-	-	3.497	3.526	
NO ₃	NO…CH	2.380	2.378	2.576	2.534	2.538	2.395	

3D structu	ire						
	C-H…Cl	2.960	3.073*	3.017	3.061	-	-
NO ₃	NO…CH	2.286	2.378	2.605	2.608	2.606	2.713

*Disorder in the group ** Solvent mask used in the refinement.

			2ns			
		[Fe(qsal-Cl)2]NO3				
		360 K	320 K	200 K		
1D chains						
Fe-Fe						
	π-π (Type A – Fe1-Fe1)	3.499	3.477	3.459		
	π-π (Type B – Fe2-Fe2)	-	-	-		
	π-π (Type C – Fe1-Fe2)	-	-	-		
	С-Н…О	2.701	2.647	2.583		
	Cl…O	3.170	3.225	3.202		
	Fe-Fe (Type A)	6.760	6.906	6.930		
	Fe-Fe (Type B)	10.398	10.515	10.529		
NO ₃	О…С-Н	2.681	2.537	2.450		
2D plane						
NO ₃	NO…CH	2.477	2.409	2.348		
<u>3D structure</u>						
	C-H…Cl	2.898	2.863	2.807		
	С-Н…π	2.592	2.560	2.524		
	π-π	3.362	3.351	3.311		
NO ₃	NO…CH	2.493	2.552	2.369		

	T = 1	150 K	T = 2	280 K
	d _{chain} (Å)	d _{plane} (Å)	d _{chain} (Å)	d _{plane} (Å)
1 [Fe(qsal-Cl)₂]NO ₃ ·MeOH	12.475	10.280	12.780	10.270
2 [Fe(qsal-Cl) ₂]NO ₃ ·EtOH	9.752	13.687	9.869	13.696
3 [Fe(qsal-Cl)2]NO3·1-PrOH	11.020	18.611	11.052	18.769
	T = 2	T = 200 K		360 K
2ns [Fe(qsal-Cl) ₂]NO ₃	15.368	14.355	15.271	14.527

Table S4 Distances between the chains (d_{chain}) and the planes (d_{plane}) at different temperatures.

Figure S1. Experimental PXRD diffractograms (blue) and the corresponding simulated patterns (red) for **1-3**.

Figure S2. Structure representation of the 2D supramolecular interactions connecting the chains of iron (III) for **1** (top), **2** (middle-top), **3** (middle-bottom) and **2ns** (bottom) at 150 K (**1-3**) and 200 K (**2ns**).

Figure S3. Structure representation of the 3D structure connecting the planes by nitrate molecules for **1** (top), **2** (middle-top), **3** (middle-bottom) and **2ns** (bottom) at 150 K (**1-3**) and 200 K (**2ns**).

Figure S4. Structure representation of the 3D structure for 2ns with layers end on view (top) and layers side on view (bottom) for **2ns** at 200 K.

Figure S5. Structure representation of the 3D structure for **2ns** with plane A to plane A interactions and plane A to plane B interactions at 200 K.

Figure S6. Structure representation of the 3D structure connecting the planes by π - π interactions for **2ns** at 200 K.

Complex	Т(К)	Н…Н	H…Cl	Н…О	н…с	C…C	C…Cl	O…Cl	Cl…Cl	Other
1 [Fe(qsal-	150	36.7	9.9	20.4	14.3	6.9	8.4	1.3	0	2.1
Cl) ₂]NO ₃ ·MeOH	280	37.5	10.2	18.9	14.0	6.8	8.5	1.6	0	2.5
2 [Fe(qsal-	150	34.0	6.1	24.5	13.9	8.0	9.9	0.6	1.5	2.5
Cl)₂]NO₃·EtOH	280*									
2ns [Fe(qsal-	200	27.0	11.8	20.8	21.8	7.8	6.2	2.0	0.0	2.6
CI) ₂]NO ₃	360	26.8	11.8	21.1	20.3	8.5	5.5	2.5	0.0	3.5

Table S5. Intermolecular interactions contributions for 1-2 calculated by Hirshfeld surface atdifferent temperatures.

*Solvent mask used in the refinement

Figure S7. Hirshfeld surface mapped with d_{norm} (left) and 2D fingerprint of all contacts and O…H interactions for **1**, **2** and **2n**.

Figure S8. TGA curves for 1-3, with the assigned mass losses.

Figure S9. Experimental PXRD diffractogram of **1** after heating at 350 K and the corresponding simulated patterns of solvated complex **1** and **2ns** (non-solvated).

Figure S10. Experimental PXRD diffractogram of **2** after heating at 350 K and the corresponding simulated patterns of solvated complex **2** and **2ns** (non-solvated).

Figure S11. Experimental PXRD diffractogram of **3** after heating at 350 K and 480K, and the corresponding simulated patterns of solvated complex **3** and **2ns** (non-solvated).

Figure S12. Thermal variation of $\chi_M T$ versus T plots for **3** at different cycles.

Figure S13. Thermal variation of $\chi_M T$ versus T plots for **1** at different cycles.

Figure S14. Thermal variation of $\chi_M T$ versus T plots for **1** and **2** at the 2nd cycle.

Figure S15. Thermal variation of $\chi_M T$ versus T plots for 2 at different cycles.

Table S6 Comparison of DFT optimized and experimental (in parenthesis) average bond lengths (Å) and volume cells (Å³) for the low- and high- spin states for compounds **1** and **2**. CIF files of the optimized structures are available as ESI.

	1 [Fe(qsal-Cl);]NO₃·MeOH	2 [Fe(qsal-Cl) ₂]NO ₃ ·EtOH		
	LS	HS	LS	HS	
Fe-Oph _{av}	1.901 (1.874)	1.947	1.841 (1.885)	1.946 (1.904)	
Fe-Nav	1.955 (1.953)	2.162	1.909 (1.975)	2.171 (2.120)	
volume	2958 (2984)	3036	3021 (3034)	3039 (3125)	

1 : [Fe(qsal-Cl)₂]NO₃·MeOH

Figure S16. Unit cell of the optimized structures of **1** with [4HS] and [3HS-1LS] (top) [4LS] and [3LS-1HS] (bottom).

2 : [Fe(qsal-Cl)₂]NO₃·EtOH

Figure S17. Unit cell of the optimized structures of **2** with [4HS] and [3HS-1LS] (top) [4LS] and [3LS-1HS] (bottom).

Figure S18. Unit cell of the optimized structures of **2ps** with [4HS] and [3HS-1LS] (top) [4LS] and [3LS-1HS] (bottom).

2ns : [Fe(qsal-Cl)₂]NO₃

Figure S19. Unit cell of the optimized structures of **2ns** with [4HS] and [3HS-1LS] (top) [4LS] and [3LS-1HS] (bottom).