Manipulating Ru Oxidation within Electrospun Carbon Nanofibers to Boost Hydrogen and Oxygen Evolution for Electrochemical Overall Water Splitting

Mengxiao Zhong, Su Yan, Jiaqi Xu, Ce Wang, Xiaofeng Lu*

Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun

130012, P. R. China.

*Corresponding author.

Email address: xflu@jlu.edu.cn (Prof. X. Lu)

Measurements of the calibration of Hg/HgO electrode

The Hg/HgO electrode as the reference electrode was calibrated by a relatively steady state chronoamperometry method in H₂-saturated 1 M KOH. Two polished Pt foils with the same area served as working electrode and counter electrode to form a three-electrode system. A series of chronoamperometry curves were measured for 300 s to get the current interconvert between the hydrogen oxidation and hydrogen evolution reaction. The potential at zero net current was obtained from the figure plotting the currents at 300 s with the corresponding applied potentials. In this study, the potential of zero net current was found at -0.928 V vs. Hg/HgO (Fig. S1). Therefore, the potentials were transferred to reversible hydrogen electrode (RHE) via the Nernst equation: $E_{RHE} = E_{Hg/HgO} + 0.928$ V.

Fig. S1 The current as a function of the applied potentials for the calibration of Hg/HgO reference electrode.

Fig. S2 SEM images of (a) Ru precursor-PAN-15 and (c) Ru-CNFs-15. Statistic histograms of the diameter distribution of (b) Ru precursor-PAN-15 and (d) Ru-CNFs-15.

Fig. S3 SEM images of (a) RuO₂/Ru-CNFs-300, (c) RuO₂/Ru-CNFs-350, (e) RuO₂/Ru-CNFs-400 and (g) RuO₂/Ru-CNFs-450. Statistic histograms of the diameter distribution of (b) RuO₂/Ru-CNFs-300, (d) RuO₂/Ru-CNFs-350, (f) RuO₂/Ru-CNFs-400 and (h) RuO₂/Ru-CNFs-450.

Fig. S4 SEM images of (a) Ru precursor-PAN-7.5 and (c) Ru precursor-PAN-22.5. Statistic histograms of the diameter distribution of (b) Ru precursor-PAN-7.5 and (d) Ru precursor-PAN-22.5.

Fig. S5 SEM images of (a) Ru-CNFs-7.5 and (c) Ru-CNFs-22.5. Statistic histograms of the diameter distribution of (b) Ru-CNFs-7.5 and (d) Ru-CNFs-22.5.

Fig. S6 SEM images of (a) RuO₂/Ru-CNFs-350-7.5 and (c) RuO₂/Ru-CNFs-350-22.5. Statistic histograms of the diameter distribution of (b) RuO₂/Ru-CNFs-350-7.5 and (d) RuO₂/Ru-CNFs-350-22.5.

Fig. S7 TEM images of (a) Ru-CNFs-15, (b) RuO₂/Ru-CNFs-300, (c) RuO₂/Ru-CNFs-400 and (d) RuO₂/Ru-CNFs-450.

Fig. S8 TEM images of (a) Ru-CNFs-7.5 and (b) Ru-CNFs-22.5, (c) RuO₂/Ru-CNFs-350-7.5 and (d) RuO₂/Ru-CNFs-350-22.5.

Fig. S9 (a) XRD patterns of Ru-CNFs-7.5, Ru-CNFs-15 and Ru-CNFs-22.5. (b) XRD patterns of RuO₂/Ru-CNFs-350-7.5, RuO₂/Ru-CNFs-350-15 and RuO₂/Ru-CNFs-350-22.5.

Fig. S10 (a) Full survey and (c) narrow-scan XPS spectrum of Ru-CNFs-15. (b) Full survey and (d) narrow-scan XPS spectrum of RuO₂/Ru-CNFs-350.

Fig. S11 (a) Polarization curves and (b) Tafel plots of different RuO_2/Ru -CNFs catalysts for OER in 1 M KOH.

Fig. S12 Nyquist plots of different catalysts for OER. The dots and lines represent the experimental and fitting data, respectively.

Fig. S13 The equivalent circuit model of electrodes. R_{Ω} is cell resistance including the connections, the electrolyte, and oxide deposit resistance; R_{ct} is the charge transfer resistance; R_1 is the contact resistance between the catalyst and electrode, Q_1 and Q_{dl} are the signs of the constant phase element and the double-layer capacitance, respectively.

Fig. S14 CV curves with different scan rates from 10 to 50 mV s⁻¹ in the region of 1.104-1.204 V *vs.* RHE for (a) RuO₂/Ru-CNFs-300, (b) RuO₂/Ru-CNFs-350, (c) RuO₂/Ru-CNFs-400, (d) RuO₂/Ru-CNFs-450 and (e) Ru-CNFs-15, respectively. (f) C_{dl} values of different catalysts.

Estimation of ECSA

The ECSA value was evaluated from the double layer capacitance (C_{dl}), which was determined by a CV method. The CV measurements were proceeded in a potential range of 1.104-1.204 V vs. RHE (with no Faradic responses) at different scan rates of 10, 20, 30, 40 and 50 mV s⁻¹. Then, C_{dl} values were calculated by plotting capacitive current density Δj (j_{anode} - $j_{cathode}$, acquired from the corresponding CV curves) at 1.154 V vs. RHE versus scan rate, and the linear slope value is twice to the C_{dl} . Thus, the ECSA values can be estimated according to the following equation: ECSA = (C_{dl} ·S)/ C_s , where S is the the geometric area of the working electrode and C_s is the specific capacitance of a smooth surface (generally assumed to be 0.04 mF cm⁻² based on literatures).¹⁻⁴

Fig. S15 (a) SEM image, (b) XRD pattern, and narrow-scan XPS spectra of (c) Ru 3p and (d) O 1s of RuO₂/Ru-CNFs-350 after the i-t measurement for OER.

Fig. S16 (a) Polarization curves and (b) Tafel plots of different RuO_2/Ru -CNFs catalysts for HER in 1 M KOH.

Fig. S17 (a) SEM image, (b) XRD pattern, and narrow-scan XPS spectra of (c) Ru 3p and (d) O 1s of RuO₂/Ru-CNFs-350 after the i-t measurement for HER.

Sample	Substrate	<i>j</i> (mA cm ⁻²)	η (mV)	Tafel slope (mV dec ⁻¹)	Reference		
DuO /Du CNEs		10	203				
250 KuO ₂ /Ku-CINFS-	GCRDE ^{a)}	100	256	40.0	This work		
550		200	280				
Commercial RuO ₂	GCRDE	10	339	91.5	This work		
Ru-CoV-LDH/NF	NF ^{b)}	10	230	81.2	<i>ChemSusChem</i> 2021, 14 , 730.		
$RuO_2@Zn_3V_3O_8$	CP ^{c)}	10	228	46	ACS Appl. Mater. Interfaces 2021, 13 , 54951.		
RuTe ₂ -400	GCE ^{d)}	10	275	53	<i>Appl. Catal. B-Environ.</i> 2020, 278 , 119281.		
		20	216		Appl. Catal. B-Environ.		
Ru-N1CoP/NF	NF	100	285	84.5	2020, 279 , 119396.		
RuO ₂ /F-graphene	GCE	10	239	56	Inorg. Chem. Front. 2020, 7 , 2188.		
CoNiFe LDH/RuO _{2.1}	GCE	10	281	48.9	ACS Appl. Mater. Interfaces 2020, 12 , 33083.		
NiTe@RuO ₂	NF	10	274	65	<i>Appl. Catal. B-Environ.</i> 2020, 272 , 118988.		
Ru–MnFe/NF	NF	20	262	75	<i>Adv. Energy Mater.</i> 2020, 10 , 2000814.		
Ru-RuO ₂ /CNT	GCE	10	210	64	<i>Nano Energy</i> 2019, 61 , 576.		
0.27-RuO ₂ @C	GCRRDE e)	10	250	68	Nano Energy 2019, 55 , 49.		
RuCu NSs	GCE	10	234	41.2	Angew. Chem. Int. Ed. 2019, 58 , 13983.		
RuO ₂ /NiO/NF	NF	10	250	50.5	<i>Small</i> 2018, 14 , 1704073.		
Ru NWs	GCE	10	224	46	<i>Adv. Funct. Mater.</i> 2018, 28 , 1803722.		
Ru-RuP _x -Co _x P	GCE	10	291	85.4	Nano Energy 2018, 53 , 270.		
Ru/Cu-doped RuO ₂	GCE	10	204	56	<i>Small</i> 2018, 41 , 1803009.		
Cu–RuO ₂	GCE	10	240	NA	<i>Adv. Mater.</i> 2018, 30 , 1801351.		

Table S1 Comparison of some representative catalysts for OER properties in 1 M KOH.

^{a)} Rotating disk electrode made of glassy carbon; ^{b)}Ni foam; ^{c)} Carbon paper; ^{d)} Glassy carbon electrode; ^{e)} Rotating ring disk electrode made of glassy carbon.

Table S2 The fitting data of the EIS measurements of the RuO_2/Ru -CNFs-350 catalyst with other prepared control samples for OER.

Sample	$\mathbf{R}_{\Omega}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{ct}}\left(\Omega ight)$		
Ru-CNFs-15	5.99	695.2		
RuO ₂ /Ru-CNFs-300	4.79	1431		
RuO ₂ /Ru-CNFs-350	4.80	6.37		
RuO ₂ /Ru-CNFs-400	4.82	6.79		
RuO ₂ /Ru-CNFs-450	4.63	29.05		

Sample	C _{dl} (mF cm ⁻²)	ECSA (cm ⁻²)	RF ^{a)}
Ru-CNFs-15	16.17	79.23	404.25
RuO ₂ /Ru-CNFs-300	28.3	138.67	707.5
RuO ₂ /Ru-CNFs-350	140.6	688.94	3515
RuO ₂ /Ru-CNFs-400	118.9	582.61	2972.5
RuO ₂ /Ru-CNFs-450	30.7	150.43	767.5

Table S3 Comparison of the ECSA values of the RuO₂/Ru-CNFs-350 catalyst with other prepared control samples.

^{a)} RF is the roughness factor calculated by taking the estimated ECSA and dividing by the geometric area of the electrode, $0.196 \text{ cm}^{2.4}$

Sample	Substrate	<i>j</i> (mA cm ⁻²)	η (mV)	Tafel slope (mV dec ⁻¹)	Reference
		10	21		
RuO ₂ /Ru-CNFs-350	GCRDE ^{a)}	50	51	25.1	This work
		150	99		
Commercial Pt/C	GCRDE	10	24	25	This work
Ru-CoV-LDH/NF	NF ^{b)}	10	32	36.4	<i>ChemSusChem</i> 2021, 14 , 730.
Bu/Co.N.CoF.	NF	10	53	144-1	Chem. Eng. J.
	INI	100	199	144.1	2021, 414 , 128865.
RuTe ₂ -400	GCE ^{c)}	10	34	28	<i>Appl. Catal. B: Environ.</i> 2020, 278 , 119281.
Ni D Du	GCE	10	123	56.7	Adv. Mater.
11151 ₄ -1Ku	$CC^{d)}$	10	54	52	2020,1906972.
(Ru–Co)O _x /CC	CC	10	44.1	23.5	Angew. Chem. Int. Ed. 2020, 59 , 17219.
RuO ₂ /F-graphene	GCE	10	49	31	Inorg. Chem. Front. 2020, 7 , 2188.
SA-Ru-MoS ₂	GCE	10	76	21	<i>Small Methods</i> 2019, 3 , 1900653.
Ru/Ni(OH) ₂ /NF	NF	10	25	47	J. Mater. Chem. A 2019, 7, 11062.
RuB_2	GCE	10	28	28.7	<i>Adv. Energy Mater.</i> 2019, 9 , 1803369.
Sr ₂ RuO ₄	GCRDE	10	61	51	<i>Nat. Commun.</i> 2019, 10 , 149.
Ru ND/C	GCE	10	43.4	49	<i>Chem. Commun.</i> 2018, 54 , 4613.
RuO ₂ /NiO/NF	NF	10	22	31.7	<i>Small</i> 2018, 14 , 1704073.
Ru@GnP	RRDE ^{e)}	10	22	28	<i>Adv. Mater.</i> 2018, 30 , 1803676.
Ru NP/C	GCE	50	69	33	<i>Adv. Energy. Mater.</i> 2018, 8 ,1801698.
RuCoP	GCE	10	23	37	<i>Energ. Environ. Sci.</i> 2018, 11 , 1819.
Ru ₂ P nanoparticles	GCE	10	54	29.3	<i>Nat. Nanotechnol.</i> 2017, 12 , 441.
RuP ₂ @NPC	GCE	10	52	69	Angew. Chem., Int. Ed. 2017, 56 , 11559.

Table S4 Comparison of some representative catalysts for HER properties in 1 M KOH.

^{a)} Rotating disk electrode made of glassy carbon; ^{b)} Ni foam; ^{c)} Glassy carbon electrode; ^{d)} Carbon cloth; ^{e)} Rotating ring disk electrode made of glassy carbon.

Table	e S5	The	fitting	data	of the	e EIS	measurer	nents c	of the	RuO ₂ /	Ru-Cl	NFs-3:	50 c	catalyst	with
other	prep	ared	contro	l sam	ples f	or HI	ER.								

Sample	$\mathrm{R}_{\Omega}(\Omega)$	$R_{ct}(\Omega)$
Ru-CNFs-15	5.07	5.49
RuO ₂ /Ru-CNFs-300	5.14	13.60
RuO ₂ /Ru-CNFs-350	5.16	3.26
RuO ₂ /Ru-CNFs-400	4.88	8.48
RuO ₂ /Ru-CNFs-450	4.94	14.09

Table S6 Comparison of some representative catalysts for overall water splitting properties in

 1 M KOH.

Electrolyzer (Cathode Anode)	Substrate	Voltage@10 mA cm ⁻² (V)	Reference
RuO ₂ /Ru-CNFs-350 RuO ₂ /Ru-CNFs-350	Ni foam	1.452	This work
Commercial Pt/C Commercial RuO ₂	Ni foam	1.560	This work
Ru-CoV-LDH/NF Ru-CoV-LDH/NF	Ni foam	1.5	<i>ChemSusChem</i> 2021, 14 , 730.
(Ru-Co)O _x /CC (Ru-Co)O _x /CC	Carbon cloth	1.488	Angew. Chem. Int. Ed. 2020, 59 , 17219.
RuTe ₂ -400 RuTe ₂ -400	Glassy carbon electrode	1.57	<i>Appl. Catal. B-Environ.</i> 2020, 278 , 119281.
Ru-NiFe-P Ru-NiFe-P	Ni foam	1.47	<i>Appl. Catal. B: Environ.</i> 2020, 263 , 118324.
Ru-MnFeP/NF Ru-MnFeP/NF	Ni foam	1.47	Adv. Energy Mater. 2020, 2000814
Ru-NiCoP/NF Ru-NiCoP/NF	Ni foam	1.515	<i>Appl. Catal. B-Environ.</i> 2020, 279 , 119396.
RuO ₂ /F-graphene RuO ₂ /F-graphene	Glassy carbon electrode	1.56	Inorg. Chem. Front. 2020, 7 , 2188.
NiTe@RuO₂∥ NiTe@NiFe-LDH	Ni foam	1.49	<i>Appl. Catal. B-Environ.</i> 2020, 272 , 118988.
RuIrO _x RuIrO _x	Carbon fiber paper	1.47	<i>Nat. Commun.</i> 2019, 10 , 4875.
0.27-RuO ₂ @C 0.27-RuO ₂ @C	Rotating ring disk electrode	1.50	Nano Energy 2019, 55 , 49.
RuCu NSs/C-250 °C∥ RuCu NSs/C-350 °C	Glassy carbon electrode	1.49	Angew. Chem. Int. Ed. 2019, 58 , 13983.
Ru/Cu-doped RuO ₂ Ru/Cu-doped RuO ₂	Glassy carbon electrode	1.47	<i>Small</i> 2018, 14 , 1803009.
Ir NWs RuO ₂ NWs	Glassy carbon electrode	1.47	Adv. Funct. Mater. 2018, 1803722
RuO ₂ /NiO/NF RuO ₂ /NiO/NF	Ni foam	1.5	Small 2018, 1704073
NiFeRu-LDH/NF NiFeRu-LDH/NF	Ni foam	1.52	<i>Adv. Mater.</i> 2018, 30.

References

1 S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang and Q. Chen, Mn-doped RuO₂ nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media, *ACS Catal.*, 2019, **10**, 1152.

2 J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman and T. F. Jaramillo, Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity, *ACS Catal.*, 2012, **2**, 1916.

3 B. Chen, X. He, F. Yin, H. Wang, D. J. Liu, R. Shi, J. Chen and H. Yin, MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery, *Adv. Funct. Mater.*, 2017, **27**, 1700795.

4 C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, *J. Am. Chem. Soc.*, 2013, **135**, 16977.