Electronic Supplementary Information (ESI)

Robust metal-organic framework with rich electronegative sites for

removal of CO_2 from a ternary $C_2H_2/C_2H_4/CO_2$ mixture

Cheng Xiong¹⁺, Yan-Hong Xiao¹⁺, Qingyou Liu², Ling Chen¹, Chun-Ting He¹, Qing-Yan Liu^{1*} & Yu-Ling Wang^{1*}

¹College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, China. ²Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China. [†]These authors contributed equally.

Corresponding Authors (email: ylwang@jxnu.edu.cn; qyliuchem@jxnu.edu.cn)

1. Characterization.

Physical Measurements. FT-IR spectra were recorded from KBr disc on a Perkin-Elmer Spectrum One FT-IR spectrometer ranging from 400 to 4000 cm⁻¹. Thermogravimetric analyses were performed under a nitrogen atmosphere with a heating rate of 10 °C/min using a PE Diamond thermogravimetric analyser. Powder X-ray diffraction analyses were performed on a Rigaku Ultima IV diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å). Energy Dispersive X-Ray Spectroscopy was performed on a HITACHI S-3400N.

Crystallographic Study. X-ray single-crystal diffraction experiment was carried out a Rigaku Oxford SuperNova diffractometer equipped with an EOS detector (Mo-K*a* radiation, $\lambda = 0.71073$ Å). Absorption correction and data reduction were handled with a *CrysAlisPro package*.¹ The *SHELXT-2015*² and *SHELXL-2018*³ were applied to structure solution and refinement. The two fluorine atoms of 2,5-difluoroterephthalic ligand were disordered over two positions. Thus the hydrogen atoms of the 2,5-difluoroterephthalic ligand couldn't be added. All other hydrogen atoms were refined anisotropically. The guest water and DMF molecules are highly disordered and treated by

SQUEEZE of PLATON.⁴

Isosteric heat of adsorption. The gas adsorption isotherms measured at 273 and 298 K were first fitted to a virial equation (equation S1) (Figure S7).⁵ Then the Q_{st} values for C₂H₂, C₂H₄ and CO₂ were calculated based on the fitting parameters using equation S2 (Figure S7d).

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad (\text{equation S1})$$
$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \qquad (\text{equation S2})$$

where *P* is pressure(mmHg), *N* is the adsorbed quantity (mmol g^{-1}), *T* is the temperature(K), a_i and b_i are virial coefficients, *R* is the universal gas constant (8.314 J K⁻¹ mol⁻¹), and *m* and *n* determine the number of coefficients required to adequately describe the isotherm.

Ideal adsorbed solution theory (IAST) calculations of adsorption selectivity. The IAST was used to predict mixed gas behavior from experimentally measured single-component isotherms.⁶ The experimentally measured loadings for C_2H_2 , C_2H_4 and CO_2 in JXNU-14 were fitted with the single-site Langmuir model (equation S3 and Figure S9).

$$q = q_{A,sat} \frac{b_A p}{1 + b_A p}$$
 (equation S3)

Where p (unit: kPa) is the pressure of the bulk gas at equilibrium with the adsorbed phase, q (unit: mmol g^{-1}) is the adsorbed amount per mass of adsorbent, $q_{A,sat}$ (unit: mmol g^{-1}) is the saturation capacity, b_A (unit: 1/kPa) is the affinity coefficient.

The adsorption selectivity for binary mixture (A and B) using the Langmuir fitting parameters is defined by equation S4.

$$S_{ads} = \frac{q_A/q_B}{y_A/y_B}$$
 (equation S4)

(where the q_A and q_B represent the molar loadings (mmol g⁻¹). The y_A and y_B ($y_B = 1 - y_A$) are the mole fractions in a bulk fluid mixture).

Breakthrough separation experiments. The breakthrough curves were measured on a homemade apparatus for the binary C_2H_2/CO_2 (v:v = 1:1) and C_2H_2/CO_2 (v:v = 1:1) and the ternary $C_2H_2/C_2H_4/CO_2$ (v:v:v = 1:1:1) at 298 K and 1 bar. The gas flows were controlled at the inlet by a mass flow meter as 2 mL min⁻¹ for the binary mixtures or 3 mL min⁻¹ for the ternary mixtures and a gas chromatograph (TCD-Thermal Conductivity Detector) continuously monitored the effluent

gas from the adsorption bed. Prior to every breakthrough experiment, we activated the sample by flushing the adsorption bed with helium gas for 1 hours at 298 K. Subsequently, the column was allowed to equilibrate at the measurement rate before we switched the gas flow

	C ₂ H ₂	$\mathcal{C}_{2}H_{4}$	CO ₂
Molecule size (Å ³)	3.32 × 3.34 × 5.7	3.3 × 4.2 × 4.8	13.18 × 3.33 × 5.36
Boiling point (K)	188.4	169.4	194.7
Dipole moment (e.s.u. cm)	0	0	0
Quadrupole moment (×10 ⁻²⁶ e.s.u. cm ²)	3.00	1.50	4.30
Polarizability (×10 ⁻²⁵ cm ³)	33.3-39.3	42.52	29.11
Kinetic diameter (Å)	3.300	4.163	3.300

Table S1. Crystal st	ructure refinement data.
----------------------	--------------------------

	JXNU-14
formula	$C_{42}H_{18}N_6O_{13}F_6Fe_3\\$
fw	1096.17
temp (K)	293(2) K
Radiation	Mo-Kα (0.71073 Å)
cryst syst	hexagonal
Space group	P6 ₃ /mmc
Ζ	2
<i>a</i> (Å)	16.7482(3)
<i>b</i> (Å)	16.7482(3)
<i>c</i> (Å)	15.2933(6)
α (deg)	90
β (deg)	90

120
3715.1(2)
0.980
0.636
9894
1456
1096
0.0316
0.0895
0.2447
2166003

It should be noted that the counter ions of hydroxide ions are not included into the formula. ^{*a*} $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}$

2. Results and discussion

Fig. S1 (a) The trimeric [Fe₃(μ_3 -O)] cluster is surrounded by six DFBDC^{2–} and three TPT ligands. (b-d) 3D structure of JXNU-14 showing the 1D channels with triangular aperture (Hydrogen atom are not shown. Fluorine atoms represent as green lines).

0		¢			P	Spec	trum 1
0 1	2	3	4	5	6	1	8
Full Scale 2518	cts Cursor: 8.05	52 (5 c	ts)				keV

Element	Weight%	Atomic%
C K	45.37	56.26
N K	7.18	7.63
O K	21.54	20.06
F K	17.65	13.84
Cl K	0.03	0.01
Fe K	8.23	2.20
Totals	100.00	

Fig. S2 Energy dispersive X-ray spectroscopy of JXNU-14.

Fig. S3 (a) PXRD patterns of JXNU-14. (b) PXRD patterns of JXNU-14 soaking in aqueous solutions with different pH values.

Fig. S4 TGA curves of JXNU-14.

Fig. S5 BET surface area plot (a) and Langmuir surface area plot (b) for JXNU-14.

Fig. S6 Adsorption isotherms of JXNU-14 at 273 K.

Fig. S7 Virial fits of C_2H_2 (a), C_2H_4 (b) and CO_2 (c) isotherms and (d) Q_{st} for C_2H_2 , C_2H_4 and CO_2 in JXNU-14.

Fig. S8 Cycles of (a) C_2H_2 and (b) C_2H_4 adsorption for JXNU-14 at 298 K.

Fig. S9 The graphs of the single-site Langmuir equation fit for adsorption of C_2H_2 (a), C_2H_4 (b) and CO_2 (c) at 298 K on JXNU-14. (d) IAST selectivity for JXNU-14 at 298 K.

Fig. S10 The cycling breakthrough tests for (a) C_2H_2/CO_2 (1:1) and (b) C_2H_4/CO_2 (1:1) with JXNU-14 (total gas flow: 2 mL min⁻¹).

The capture amount $(Q_1, \text{ mmol } g^{-1})$ of C_2H_2 during t_0 to t_1 is calculated as:

$$Q_{1} = \frac{v \times V\%}{24.5 \times m} \int_{t_{0}}^{t_{1}} (c_{0} - c_{i}) dt = \frac{v \times V\%}{24.5 \times m} (S1 + S2)$$

v refers to the total flow rate of the gas mixture, V% refers to the molar fraction of C₂H₂, and *m* refers to the mass of the adsorbent.

The captured amounts of CO₂ (Q_2 , mmol g⁻¹) and C₂H₄ (Q_3 , mmol g⁻¹) during t₀ to t₁ can be similarly calculated as

$$Q_2 = \frac{v \times V\%}{22.4 \times m} (S1 - S3) \qquad \qquad Q_3 = \frac{v \times V\%}{22.4 \times m} (S4 - S5)$$

Fig. S11 The breakthrough curves of $C_2H_2/C_2H_4/CO_2$ (1:1:1) for JXNU-14 at 298 K.

Fig. S12 (a) Breakthrough curves for $C_2H_2/C_2H_4/CO_2$ (1:1:1) mixture with JXNU-14. (b) Cycling breakthrough experiments for JXNU-14 based on $C_2H_2/C_2H_4/CO_2$ (1:1:1) mixture (total gas flow: 3 mL min⁻¹)

Table S3. Summary of adsorption uptakes (298 K and 1 bar) and IAST selectivities ($C_2H_2/CO_2=$ 1:1) at 1 bar and 298 K for MOFs mentioned in main text.

Compounds	C_2H_2 uptake (cm ³ g ⁻¹)	CO_2 uptake (cm ³ g ⁻¹)	S _{ads}	Ref.
JNU-1	62.1	50.3	3.0	7
SNNU-63	91.1	43.7	2.7	8

FJU-6-TATB	110.0	58.0	3.1	9
UTSA-68a	70.1	39.6	3.4	10
JXNU-14	137.5	67.4	2.97	This work

Table S4. Summary of adsorption uptakes (298 K and 1 bar) and IAST selectivities ($C_2H_4/CO_2=$ 1:1) at 1 bar and 298 K for MOFs mentioned in main text.

Compounds	C_2H_4 uptake (cm ³ g ⁻¹)	CO_2 uptake (cm ³ g ⁻¹)	S _{ads}	Ref.
SNNU-95	15.3	14.7	2.4	11
ZJNU-120(Sm)	52.7	33.9	2.4	12
MOF-74(Zn)	132.3	124.2	3.3	13
Ni ₂ (m-dobdc)	145.6	156.8	4.1	14
UTSA-74	103.8	90.5	5.4	15
JXNU-14	110.1	67.4	2.6	This work

References

- 1 CrysAlisPro, Rigaku Oxford Diffraction: The Woodlands, TX. 2015.
- 2 G. M. Sheldrick Acta Crystallogr Sect A Found Adv, 2015, A71, 3–8.
- 3 G. M. Sheldrick. Acta Crystallogr Sect C Struct Chem, 2015, C71, 3-8.
- 4 Spek AL. PLATON: A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands. 2001
- 5 J. L. C. Rowsell and O. M.Yaghi, J Am Chem Soc, 2006, 128, 1304–1315.
- 6 A-L Myers and J. M.Prausnitz, *AIChE J*, 1965, **11**, 121–127.

7 H. Zeng, M. Xie, Y.-L. Huang, Y. Zhao, X.-J. Xie, J.-P. Bai, M.-Y. Wan, R. Krishna, W. Lu and D. Li, *Angew. Chem., Int. Ed.*, 2019, **58**, 8515–8519.

8 Y.-T. Li, J.-W. Zhang, H.-J. Lv, M.-C. Hu, S.-N. Li, Y.-C. Jiang and Q.-G. Zhai, *Inorg. Chem.*, 2020, 59, 10368–10373.

9 L. Liu, Z. Yao, Y. Ye, Y. Yang, Q. Lin, Z. Zhang, M. O'Keeffe and S. Xiang, J. Am. Chem. Soc.
2020, 142, 9258–9266.

10 G.-G. Chang, B. Li, H.-L. Wang, T.-L. Hu, Z.-B. Bao and B.-L. Chen, *Chem. Commun.*, 2016,
52, 3494–3496.

H.-P. Li, S.-N. Li, X.-Y. Hou, Y.-C. Jiang, M.-C. Hu and Q.-G. Zhai, *Dalton Trans.*, 2018, 47, 9310–9316.

12 X.-X. Wang, L.-L. Yue, P. Zhou, L.-H. Fan and Y.-B. He, Inorg. Chem., 2021, 60, 17249–17257.

13 X. Zhang, H. Cui, R.-B. Lin, R. Krishna, Z.-Y. Zhang, T. Liu, B. Liang and B.-L. Chen, *ACS Appl. Mater. Inter.*, 2021, **13**, 22514–22520.

J. E. Bachman, D. A. Reed, M. T. Kapelewski, G. Chachra, D. Jonnavittula, G. Radaelli and J.-R. Long, *Energ Environ. Sci.*, 2018, 11, 2423–2431.

15 X. Zhang, H. Cui, R.-B. Lin, R. Krishna, Z.-Y. Zhang, T. Liu, B. Liang and B.-L. Chen, *ACS Appl. Mater. Inter.*, 2021, **13**, 22514–22520.