Modulation mechanism of geometric and electronic structure of bimetallic catalysts: Pd_{13-m}Ag_m (m=0-13) clusters for acetylene semi-hydrogenation

Panpeng Wei,^a Jian Zheng,^a Qiang Li,^b Yucai Qin,^{b*} Huimin Guan,^b Duping Tan,^c

Lijuan Song,^{ab*}

^a College of Chemistry and Chemical Engineering, China University of Petroleum,

Qingdao, Shandong 266580, China.

^b Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning

Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China.

^c Lanzhou Petrochemical Research Center, Petrochemical Research Institute,

Petrochina, Lanzhou 730060, China.

* Corresponding author (E-mail: lsong56@263.net)

1. Adsorption properties of C_2H_2 and C_2H_4 on $Pd_{13-m}Ag_m$ (m=0-13) clusters at 0 K

The adsorption energy ΔE_{ads} of adsorbates species on Pd_{13-m}Ag_m (m=0-13) clusters is as following:

$$\Delta E_{ads} = E_{Ads/Cluster} - E_{Ads} - E_{Cluster}$$
(1)

 $E_{ads/Cluster}$, E_{ads} and $E_{Cluster}$ are the energy of Pd_{13-m}Ag_m-C₂H_x system, gas-phase C₂H_x and bare Pd_{13-m}Ag_m cluster, respectively.

The deformation energy is calculated by

$$E_{def} = E' - E \tag{2}$$

E' is the total energy of the species in the gas phase employing the structure displayed in the adsorbed state and E is the energy after geometry optimization of the species. The adsorbate-cluster interaction energy E_{int} is calculated by

$$E_{int} = E_{Ads/Cluster} - E_{Ads} - E_{Cluster}$$
(3)

Table S1 The adsorption energies ΔE_{ads} (kJ/mol), acetylene and ethylene deformation energy E_{def} (C₂H_x) (kJ/mol), Pd_{13-m}Ag_m deformation energy E_{def} (Pd_{13-m}Ag_m) (kJ/mol), interaction energy E_{int} (kJ/mol) for acetylene and ethylene adsorption on Pd_{13-m}Ag_m (m=0-13) clusters.

m (Ag atom)	ΔE_{ads}		$E_{def}(C_2H_x)$		$E_{def}(\mathrm{Pd}_{13-n}\mathrm{Ag}_{n})$		E _{int}	
	C_2H_2	C_2H_4	C_2H_2	C_2H_4	C_2H_2	C_2H_4	C_2H_2	C_2H_4
0	-258.51	-157.52	258.99	77.00	40.61	9.51	-535.81	-242.58
1	-254.07	-138.21	272.93	68.85	41.43	10.85	-543.67	-233.43
2	-221.58	-96.94	274.54	71.99	53.30	15.99	-554.48	-223.53
3	-230.19	-124.93	200.66	85.59	13.70	10.81	-457.42	-226.93
4	-212.69	-123.00	192.30	89.99	21.02	15.34	-426.87	-222.07
5	-228.53	-139.03	187.81	85.93	10.36	18.96	-433.43	-228.21
6	-208.77	-109.35	188.26	73.41	10.38	5.96	-433.76	-198.15
7	-135.79	-84.62	172.66	22.13	5.18	4.37	-350.83	-156.91
8	-93.72	-84.45	129.57	21.94	22.00	3.09	-300.20	-155.40
9	-89.09	-95.64	46.11	22.94	3.27	3.01	-183.16	-161.45
10	-91.73	-85.34	41.59	21.59	6.23	5.10	-168.75	-152.27
11	-67.95	-74.92	36.82	21.73	11.86	12.83	-138.38	-133.94
12	-49.98	-57.28	7.10	5.87	2.04	2.03	-67.24	-78.30
13	-34.44	-42.14	3.49	4.19	3.98	4.37	-46.94	-61.84

2. Electron interaction in Pd_{13-m}Ag_m-C₂H_x system

Figure S1 Density of states for Pd₁₂Ag cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S2 Density of states for $Pd_{11}Ag_2$ cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S3 Density of states for Pd₉Ag₄ cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S4 Density of states for Pd₈Ag₅ cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S5 Density of states for Pd₇Ag₆ cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S6 Density of states for Pd_3Ag_{10} cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S7 Density of states for Pd_2Ag_{11} cluster projected on the bonded Pd atoms and C in acetylene (a) and ethylene (b) before and after adsorption. Dotted lines: before adsorption; solid lines: after adsorption.

Figure S8 Density of states for Pd₆Ag₇ cluster projected on the bonded Ag atoms and

C in acetylene

Figure S9 Electron density difference for the clusters adsorb acetylene and ethylene. The color scheme is identical to Fig. 3.

Figure S10 The lowest unoccupied molecular orbital (LUMO) of acetylene and ethylene molecule and the highest occupied molecular orbital (HOMO) of the clusters (metal atoms bonded to acetylene in some clusters are marked in fluorescent green for clarity). The color/unit scheme is identical to Fig. 5.

2. Acetylene hygrogenation on $Pd_{13-m}Ag_m$ clusters at 425 K

Figure S11 Potential energy diagram for relative pathways involving in acetylene semi-hydrogenation on Pd₁₃, Pd₁₀Ag₃, Pd₆Ag₇, Pd₅Ag₈ and Pd₄Ag₉ clusters at 425 K (* denotes the adsorption site).

In order to judge the hydrogenation path of C_2H_3 species (the CH_2CH_2 hydrogenation path or $CHCH_3$ hydrogenation path) on $Pd_{13-m}Ag_m$ (m=0-6) clusters, the difference of free energy ΔG_d is employed to determine the stability of ($CHCH_2+H$)* (the adsorption configuration of hydrogen atom near the carbon bonded with two H in C_2H_3) and (CH₂CH+H)* (the adsorption configuration of hydrogen atom near the carbon bonded with one H) on Pd_{13-m}Ag_m (m=0-6) cluster, and it is calculated by

$$\Delta G_d = G_{CHCH_2 + H} - G_{CH_2CH + H} \tag{4}$$

where $G_{CHCH2+H}$ and $G_{CH2CH+H}$ are the free energy of Pd_{13-m}Ag_m-(CHCH₂+H) and

Pd_{13-m}Ag_m-(CH₂CH+H) systems at 425 K.

Figure S12 The difference of free energy of $Pd_{13-m}Ag_m$ -(CHCH₂+H) and $Pd_{13-m}Ag_m$ -

(CH₂CH+H) systems at 425 K.