The Exploration of New Infrared Nonlinear Optical Crystals Based on Polymorphism of BaGa₄S₇

Zhen Qian, ^a Haonan Liu, ^a Yujie Zhang, ^a Hongping Wu, ^a Zhanggui Hu, ^a Jiyang Wang, ^a Yicheng Wu ^a and Hongwei Yu*^a

Correspondence: Hongwei Yu (hwyu15@gmail.com)

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

CONTENTS

1.	Table S1 (Atomic coordinates, displacement parameters and BVS)	S2	2
2.	Table S2 (Selected bond distances and angles)	S4	
3.	Table S3 (BSI and GII Indices for α -, β - and γ -BaGa ₄ S ₇)	S	511
4.	Table S4 (Summary of the mode decomposition)	S	514
5.	Table S5 (Occupied Wyckoff positions and site-symmetries)	S	516
6.	Table S6 (Atomic displacement in the distortion)	S	518
7.	Figure S1 (The Powder X-ray Diffraction of θ -BaGa ₄ S ₇)	. S20	
8.	Figure S2 (The EDS for θ - and γ -BaGa ₄ S ₇)	. S21	
9.	Figure S3 (The coordination of Ba atoms)	S23	
10.	Figure S4 (Structure comparison)	S24	
11.	Figure S5 (Atomic displacements patterns)	S26	

Atom	x	У	Z	U _{eq}	BVS
Bal	0.000000	0.4927(2)	0.39625(9)	0.0241(3)	1.80
Ba2	0.500000	0.86999(16)	0.14096(9)	0.0272(3)	1.78
Gal	0.24978(8)	1.14517(18)	-0.15007(12)	0.0126(3)	3.08
Ga2	0.37943(7)	0.66207(19)	-0.15468(12)	0.0129(3)	3.03
Ga3	0.11946(7)	1.0108(2)	0.09209(10)	0.0120(3)	3.07
Ga4	0.24919(7)	0.4873(3)	0.10382(11)	0.0122(3)	3.07
S 1	0.000000	0.8082(5)	0.1438(4)	0.0133(7)	1.91
S2	0.38529(17)	1.0116(5)	-0.1037(2)	0.0135(6)	1.94
S3	0.11530(18)	1.0143(5)	-0.0983(2)	0.0145(6)	1.94
S4	0.25341(17)	0.8472(4)	0.1536(2)	0.0104(5)	2.17
S5	0.38639(18)	0.3744(4)	0.1576(2)	0.0158(6)	1.95
S6	0.24478(17)	1.5029(4)	-0.0917(2)	0.0114(5)	2.18
S 7	0.500000	0.5079(6)	-0.0722(3)	0.0159(8)	1.89
S8	0.11521(18)	1.3504(4)	0.1544(2)	0.0148(6)	1.96

Table S1a. Atomic coordinates and U_{eq} [Å²] for θ -BaGa₄S₇.

 $U_{\rm eq}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	z	U _{eq}	BVS
Ba1	0.17944(18)	1.000000	0.8977(5)	0.0228(7)	1.80
Ba2	0.34781(15)	0.500000	0.6578(4)	0.0245(9)	1.74
Ba3	0.51031(16)	1.000000	1.1218(5)	0.0293(9)	1.78
Gal	0.5398(2)	0.74924(18)	0.7820(6)	0.0102(7)	3.01
Ga2	0.5471(2)	0.61980(18)	0.3094(6)	0.0101(8)	3.03
Ga3	0.70729(17)	0.7509(2)	0.5551(5)	0.0104(9)	3.04
Ga4	0.21459(17)	0.6203(2)	0.0769(5)	0.0105(9)	2.99
Ga5	0.37846(18)	0.8802(3)	0.5285(4)	0.0116(9)	3.02
Ga6	0.37586(15)	0.7510(3)	0.0406(5)	0.0120(9)	2.99
S1	0.3427(4)	0.8845(5)	0.1562(10)	0.0131(16)	1.91
S2	0.6709(4)	0.7448(4)	0.8879(11)	0.0118(13)	1.93
S3	0.6737(4)	0.6160(4)	0.3988(13)	0.0152(14)	1.96
S4	0.3414(3)	0.6137(5)	0.1321(10)	0.0114(15)	1.95
S5	0.5065(3)	0.7542(5)	1.1187(9)	0.0108(15)	1.92
S6	0.8380(3)	0.7543(4)	0.6581(9)	0.0109(15)	2.07
S7	0.5053(3)	0.8850(5)	0.6361(10)	0.0133(17)	2.03
S8	0.6776(4)	0.8861(4)	0.3973(13)	0.0130(14)	1.96
S9	0.5068(4)	0.6145(5)	0.6240(10)	0.0139(17)	1.91
S10	0.5121(5)	0.500000	0.0825(13)	0.012(2)	1.90
S11	0.3383(5)	1.000000	0.6948(13)	0.012(2)	1.98
S12	0.1619(5)	0.500000	-0.1219(14)	0.017(2)	2.09

Table S1b. Atomic coordinates and U_{eq} [Å²] for γ -BaGa₄S₇.

 $\overline{U_{\rm eq}}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
Ba1-S8 ^{#1}	3.456(3)	S8–Ba1–S8	58.66(9)
Ba1-S8#2	3.456(3)	S8-Ba1-S1	124.43(7)
Ba1-S1#3	3.493(4)	S8-Ba1-S1	124.43(7)
Ba1-S3#4	3.508(3)	S8–Ba1–S3	118.46(7)
Ba1-S3#5	3.508(3)	S8–Ba1–S3	90.20(6)
Ba1-S3#3	3.585(3)	S1-Ba1-S3	117.01(7)
Ba1-S3#6	3.585(3)	S8–Ba1–S3	90.20(6)
Ba1–S1	3.590(4)	S8–Ba1–S3	118.46(7)
Ba1-S6#4	3.599(3)	S1–Ba1–S3	117.01(7)
Ba1-S6#5	3.599(3)	S3–Ba1–S3	57.76(9)
Ba1-S8#4	3.642(3)	S8–Ba1–S3	63.74(6)
Ba1-S8#5	3.642(3)	S8–Ba1–S3	91.18(7)
Ba2–S7	3.395(4)	S1–Ba1–S3	60.78(7)
Ba2–S2	3.479(3)	S3–Ba1–S3	177.79(9)
Ba2-S2#7	3.479(3)	S3–Ba1–S3	122.87(7)
Ba2–S5	3.515(3)	S8–Ba1–S3	91.18(7)
Ba2-S5#7	3.515(3)	S8–Ba1–S3	63.74(6)
Ba2-S2#8	3.553(3)	S1–Ba1–S3	60.78(7)
Ba2-S2#4	3.553(3)	S3–Ba1–S3	122.87(7)
Ba2-S5 ^{#9}	3.564(3)	S3–Ba1–S3	177.79(9)
Ba2-S5#10	3.564(3)	S3–Ba1–S3	56.41(9)
Ba2-S4#7	3.629(3)	S8-Ba1-S1	56.16(6)
Ba2–S4	3.629(3)	S8-Ba1-S1	56.16(6)
Gal-S3	2.224(3)	S1–Ba1–S1	179.27(9)
Ga1–S2	2.227(3)	S3-Ba1-S1	62.37(7)
Ga1–S6	2.335(3)	S3-Ba1-S1	62.37(7)
Ga1-S4#11	2.338(3)	S3-Ba1-S1	119.83(7)
Ga2–S7	2.242(3)	S3-Ba1-S1	119.83(7)
Ga2-S5#12	2.248(3)	S8–Ba1–S6	121.64(7)
Ga2–S2	2.262(3)	S8–Ba1–S6	62.99(6)
Ga2-S6#2	2.337(3)	S1–Ba1–S6	88.30(4)
Ga3–S8	2.243(3)	S3–Ba1–S6	60.66(6)
Ga3–S1	2.248(2)	S3–Ba1–S6	118.37(6)
Ga3–S3	2.267(3)	S3–Ba1–S6	118.57(6)
Ga3–S4	2.334(3)	S3–Ba1–S6	62.21(6)
Ga4–S8 ^{#2}	2.228(3)	S1–Ba1–S6	91.67(4)
Ga4–S5	2.229(3)	S8–Ba1–S6	62.99(6)
Ga4–S4	2.320(3)	S8–Ba1–S6	121.64(7)

Table S2a. Bond lengths and angles for β -BaGa₄S₇.

S3–Ba1–S6	118.37(6)	S5–Ba2–S2	84.77(7)
S3–Ba1–S6	60.66(6)	S7–Ba2–S2	141.02(7)
S3–Ba1–S6	62.21(6)	S2–Ba2–S2	115.71(6)
S3–Ba1–S6	118.57(6)	S2–Ba2–S2	153.31(3)
S1-Ba1-S6	91.67(4)	S5–Ba2–S2	84.77(7)
S6–Ba1–S6	175.34(9)	S5–Ba2–S2	111.06(7)
S8–Ba1–S8	178.30(4)	S2–Ba2–S2	56.64(9)
S8–Ba1–S8	122.97(8)	S7–Ba2–S5	128.86(7)
S1–Ba1–S8	55.39(6)	S2–Ba2–S5	92.87(7)
S3–Ba1–S8	61.63(6)	S2–Ba2–S5	66.18(7)
S3–Ba1–S8	88.50(7)	S5–Ba2–S5	173.56(9)
S3–Ba1–S8	116.16(7)	S5–Ba2–S5	123.29(8)
S3–Ba1–S8	90.09(7)	S2–Ba2–S5	63.07(7)
S1-Ba1-S8	124.00(7)	S2-Ba2-S5	89.51(7)
S6–Ba1–S8	59.99(6)	S7–Ba2–S5	128.86(7)
S6–Ba1–S8	115.39(6)	S2–Ba2–S5	66.18(7)
S8–Ba1–S8	122.97(8)	S2–Ba2–S5	92.87(7)
S8–Ba1–S8	178.30(4)	S5–Ba2–S5	123.29(8)
S1–Ba1–S8	55.39(6)	S5–Ba2–S5	173.56(9)
S3–Ba1–S8	88.50(7)	S2–Ba2–S5	89.51(7)
S3–Ba1–S8	61.63(6)	S2–Ba2–S5	63.07(7)
S3–Ba1–S8	90.09(7)	S5–Ba2–S5	55.86(9)
S3–Ba1–S8	116.16(7)	S7–Ba2–S4	90.29(4)
S1–Ba1–S8	124.00(7)	S2–Ba2–S4	121.90(6)
S6–Ba1–S8	115.39(6)	S2–Ba2–S4	63.96(6)
S6–Ba1–S8	59.99(6)	S5–Ba2–S4	115.94(6)
S8–Ba1–S8	55.40(8)	S5–Ba2–S4	59.28(6)
S7–Ba2–S2	62.79(7)	S2–Ba2–S4	59.93(6)
S7–Ba2–S2	62.79(7)	S2–Ba2–S4	116.50(6)
S2–Ba2–S2	57.96(9)	S5–Ba2–S4	64.19(6)
S7–Ba2–S5	57.23(7)	S5–Ba2–S4	119.99(6)
S2–Ba2–S5	92.28(7)	S7–Ba2–S4	90.29(4)
S2–Ba2–S5	120.00(7)	S2–Ba2–S4	63.96(6)
S7–Ba2–S5	57.23(7)	S2–Ba2–S4	121.90(6)
S2–Ba2–S5	120.00(7)	S5–Ba2–S4	59.28(6)
S2–Ba2–S5	92.28(7)	S5–Ba2–S4	115.94(6)
S5–Ba2–S5	56.70(8)	S2–Ba2–S4	116.50(6)
S7–Ba2–S2	141.02(7)	S2–Ba2–S4	59.93(6)
S2-Ba2-S2	153.31(3)	S5–Ba2–S4	119.99(6)
S2-Ba2-S2	115.71(6)	S5–Ba2–S4	64.19(6)
S5–Ba2–S2	111.06(7)	S4–Ba2–S4	173.46(8)

S3–Ga1–S2	126.04(14)	S8–Ga3–S1	114.66(12)
S3-Ga1-S6	103.84(11)	S8–Ga3–S3	108.69(12)
S2–Ga1–S6	108.11(11)	S1–Ga3–S3	104.98(14)
S3–Ga1–S4	107.74(11)	S8–Ga3–S4	109.36(10)
S2–Ga1–S4	103.59(11)	S1–Ga3–S4	109.11(11)
S6–Ga1–S4	106.19(10)	S3–Ga3–S4	109.92(11)
S7–Ga2–S5	110.85(13)	S8–Ga4–S5	126.93(13)
S7–Ga2–S2	105.36(12)	S8–Ga4–S4	108.93(10)
S5–Ga2–S2	111.24(11)	S5–Ga4–S4	101.95(10)
S7–Ga2–S6	110.28(12)	S8–Ga4–S6	105.14(11)
S5–Ga2–S6	108.34(11)	S5–Ga4–S6	108.99(11)
S2–Ga2–S6	110.77(10)	S4–Ga4–S6	102.45(10)

Symmetry transformations used to generate equivalent atoms:

#1: -X, -1+Y, +Z; #2: +X, -1+Y, +Z; #3: -X, 1-Y, 0.5+Z; #4: +X, 2-Y, 0.5+Z; #5: -X, 2-Y, 0.5+Z; #6: +X, 1-Y, 0.5+Z; #7: 1-X, +Y, +Z; #8: 1-X, 2-Y, 0.5+Z; #9: 1-X, 1+Y, +Z; #10: +X, 1+Y, +Z; #11: +X, 2-Y, -0.5+Z; #12: +X, 1-Y, -0.5+Z; #13: -X, +Y, +Z; #14: -X, 1-Y, -0.5+Z; #15: 1-X, 2-Y, -0.5+Z; #16: -X, 2-Y, -0.5+Z;

Atom-Atom	Length [Å]	Ga2–S10	2.254(6)
Ba1–S11	3.445(9)	Ga2–S3	2.255(7)
Ba1-S1 ^{#1}	3.484(8)	Ga2–S9	2.256(8)
Ba1–S1 ^{#2}	3.484(7)	Ga2–S5 ^{#12}	2.335(7)
Ba1–S3 ^{#3}	3.526(8)	Ga3–S8	2.228(7)
Ba1–S3 ^{#4}	3.526(8)	Ga3–S3	2.231(7)
Ba1-S10 ^{#5}	3.529(10)	Ga3–S2	2.327(8)
Ba1–S3 ^{#5}	3.582(7)	Ga3–S6	2.330(6)
Ba1–S3 ^{#6}	3.582(7)	Ga4–S12	2.242(6)
Ba1–S2 ^{#3}	3.606(6)	Ga4–S8 ^{#3}	2.259(9)
Ba1–S2 ^{#4}	3.606(6)	Ga4–S4	2.271(7)
Ba1–S9 ^{#3}	3.630(8)	Ga4–S2 ^{#13}	2.349(7)
Ba1-S9 ^{#4}	3.630(8)	Ga5–S1	2.254(6)
Ba2–S9	3.419(7)	Ga5–S11	2.257(6)
Ba2–S9 ^{#7}	3.419(7)	Ga5–S7	2.263(7)
Ba2–S4 ^{#2}	3.422(6)	Ga5–S6 ^{#3}	2.326(6)
Ba2–S4 ^{#8}	3.422(6)	Ga6–S1	2.228(6)
Ba2-S10 ^{#2}	3.500(8)	Ga6–S4	2.233(6)
Ba2–S8 ^{#9}	3.572(8)	Ga6–S6 ^{#13}	2.317(6)
Ba7_S8 ^{#3}	3 572(8)	Ga6-55 ^{#12}	2.328(6)
Daz 30	5.572(0)	640 55	,
Ba2–S6 ^{#9}	3.620(7)		()
Ba2–S6 ^{#9} Ba2–S6 ^{#3}	3.620(7) 3.620(7)	Atom-Atom-Atom	Angle [°]
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4	3.620(7) 3.620(7) 3.654(6)	Atom–Atom–Atom S11–Ba1–S1	Angle [°]
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 ^{#7}	3.620(7) 3.654(6) 3.654(6)	Atom–Atom–Atom S11–Ba1–S1 S11–Ba1–S1	Angle [°] 57.33(17) 57.33(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 ^{#7} Ba3–S7 ^{#10}	3.620(7) 3.654(6) 3.654(6) 3.449(7)	Atom–Atom–Atom S11–Ba1–S1 S11–Ba1–S1 S1–Ba1–S1	Angle [°] 57.33(17) 57.33(17) 58.4(3)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 ^{#7} Ba3–S7 ^{#10} Ba3–S7	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S11-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S7	3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1}	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2}	3.620(7) 3.6520(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2}	3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 ^{#7} Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1}	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S11-Ba1-S3 S11-Ba1-S3 S11-Ba1-S3 S11-Ba1-S3 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17) 118.95(19)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1}	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 90.64(17) 90.64(17) 118.95(19) 58.0(2)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S1 ^{#1} Ba3–S11 Ba3–S5	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S11-Ba1-S3 S11-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17) 118.95(19) 58.0(2) 177.6(2)
Ba2–S6 ^{#9} Ba2–S6 ^{#9} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S1 ^{#1} Ba3–S1 ^{#1} Ba3–S5 Ba3–S5	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7) 3.619(7)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S1-Ba1-S3 S1-Ba1-S10 S1-Ba1-S10	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 118.95(19) 58.0(2) 177.6(2) 124.61(18)
Ba2–S6 ^{#9} Ba2–S6 ^{#9} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S11 Ba3–S5 Ba3–S5 ^{#10} Ba3–S7 ^{#1}	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7) 3.619(7) 3.619(7) 3.644(6)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S1-Ba1-S1 S1-Ba1-S3 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17) 118.95(19) 58.0(2) 177.6(2) 124.61(18) 124.61(18)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S11 Ba3–S5 Ba3–S5 ^{#10} Ba3–S7 ^{#1} Ba3–S7 ^{#1}	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7) 3.619(7) 3.644(6) 3.644(6)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S1 S1-Ba1-S3 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17) 118.95(19) 58.0(2) 177.6(2) 124.61(18) 124.61(18) 116.34(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S1 ^{#1} Ba3–S1 Ba3–S5 Ba3–S5 ^{#10} Ba3–S7 ^{#1} Ba3–S7 ^{#2} Ga1–S7	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7) 3.619(7) 3.644(6) 3.644(6) 2.223(7)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S1 S1-Ba1-S3 S1-Ba1-S1 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17) 118.95(19) 58.0(2) 177.6(2) 124.61(18) 124.61(18) 124.61(18) 116.34(17) 116.34(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#3} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S1 ^{#1} Ba3–S5 Ba3–S5 ^{#10} Ba3–S5 ^{#10} Ba3–S7 ^{#1} Ba3–S7 ^{#2} Ga1–S7	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7) 3.619(7) 3.644(6) 3.644(6) 2.223(7) 2.232(8)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S1 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 90.64(17) 118.95(19) 58.0(2) 177.6(2) 124.61(18) 124.61(18) 116.34(17) 116.34(17) 121.65(17)
Ba2–S6 ^{#9} Ba2–S6 ^{#9} Ba2–S4 Ba2–S4 Ba3–S7 ^{#10} Ba3–S7 Ba3–S12 ^{#11} Ba3–S8 ^{#1} Ba3–S8 ^{#1} Ba3–S8 ^{#2} Ba3–S1 ^{#2} Ba3–S1 ^{#1} Ba3–S1 ^{#1} Ba3–S1 Ba3–S5 Ba3–S5 ^{#10} Ba3–S7 ^{#1} Ba3–S7 ^{#2} Ga1–S7 Ga1–S9 Ga1–S5	3.620(7) 3.620(7) 3.654(6) 3.654(6) 3.449(7) 3.449(7) 3.475(10) 3.557(8) 3.557(8) 3.565(8) 3.565(8) 3.605(9) 3.619(7) 3.619(7) 3.644(6) 2.223(7) 2.232(8) 2.323(7)	Atom-Atom-Atom S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S1 S11-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S3 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S1-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S1-Ba1-S3 S1-Ba1-S10 S3-Ba1-S10 S3-Ba1-S10 S1-Ba1-S3 S1-Ba1-S3	Angle [°] 57.33(17) 57.33(17) 58.4(3) 61.64(17) 118.95(19) 90.64(17) 61.64(17) 118.95(19) 58.0(2) 177.6(2) 124.61(18) 124.61(18) 116.34(17) 116.34(17) 121.65(17) 64.33(16)

Table S2b. Bond lengths and angles for γ -BaGa₄S₇.

S3-Ba1-S3	176.7(2)	S3-Ba1-S9	61.54(16)
S3-Ba1-S3	122.43(18)	S10-Ba1-S9	54.83(16)
S10-Ba1-S3	60.35(16)	S3-Ba1-S9	89.00(17)
S11-Ba1-S3	121.65(17)	S3-Ba1-S9	115.17(17)
S1-Ba1-S3	91.84(17)	S2-Ba1-S9	115.24(15)
S1-Ba1-S3	64.33(16)	S2-Ba1-S9	59.93(15)
S3-Ba1-S3	122.43(18)	S9-Ba1-S9	55.3(2)
S3-Ba1-S3	176.7(2)	S9-Ba2-S9	59.1(2)
S10-Ba1-S3	60.35(16)	S9-Ba2-S4	91.10(15)
S3-Ba1-S3	57.0(2)	S9-Ba2-S4	120.07(17)
S11-Ba1-S2	91.77(10)	S9-Ba2-S4	120.07(17)
S1-Ba1-S2	121.62(16)	S9-Ba2-S4	91.10(15)
S1-Ba1-S2	63.21(16)	S4-Ba2-S4	58.5(2)
S3-Ba1-S2	60.60(15)	S9-Ba2-S10	56.91(17)
S3-Ba1-S2	118.50(14)	S9-Ba2-S10	56.91(17)
S10-Ba1-S2	88.16(10)	S4-Ba2-S10	63.22(16)
S3-Ba1-S2	118.74(14)	S4-Ba2-S10	63.22(16)
S3-Ba1-S2	61.84(15)	S9-Ba2-S8	150.34(18)
S11-Ba1-S2	91.77(10)	S9-Ba2-S8	113.96(17)
S1-Ba1-S2	63.21(16)	S4-Ba2-S8	114.47(19)
S1-Ba1-S2	121.62(16)	S4-Ba2-S8	87.43(17)
S3-Ba1-S2	118.50(14)	S10–Ba2–S8	147.49(14)
S3-Ba1-S2	60.60(15)	S9-Ba2-S8	113.96(17)
S10-Ba1-S2	88.16(10)	S9-Ba2-S8	150.34(18)
S3-Ba1-S2	61.84(15)	S4-Ba2-S8	87.43(17)
S3-Ba1-S2	118.74(14)	S4-Ba2-S8	114.47(19)
S2-Ba1-S2	175.1(2)	S10-Ba2-S8	147.49(14)
S11-Ba1-S9	123.18(19)	S8-Ba2-S8	56.0(2)
S1-Ba1-S9	178.45(19)	S9-Ba2-S6	122.37(15)
S1-Ba1-S9	123.14(15)	S9-Ba2-S6	63.31(16)
S3-Ba1-S9	61.54(16)	S4-Ba2-S6	118.42(15)
S3-Ba1-S9	88.46(17)	S4-Ba2-S6	59.96(15)
S10-Ba1-S9	54.83(16)	S10–Ba2–S6	91.91(9)
S3-Ba1-S9	115.17(17)	S8-Ba2-S6	59.55(13)
S3-Ba1-S9	89.00(17)	S8-Ba2-S6	115.55(14)
S2-Ba1-S9	59.93(15)	S9-Ba2-S6	63.31(16)
S2-Ba1-S9	115.24(15)	S9-Ba2-S6	122.37(15)
S11-Ba1-S9	123.18(19)	S4–Ba2–S6	59.96(15)
S1-Ba1-S9	123.14(15)	S4–Ba2–S6	118.42(15)
S1-Ba1-S9	178.45(19)	S10-Ba2-S6	91.91(9)
S3-Ba1-S9	88.46(17)	S8-Ba2-S6	115.55(13)

S8-Ba2-S6	59.55(13)	S1-Ba3-S1	57.0(2)
S6-Ba2-S6	174.31(19)	S7-Ba3-S11	61.25(16)
S9-Ba2-S4	64.09(14)	S7-Ba3-S11	61.25(16)
S9-Ba2-S4	90.82(15)	S12-Ba3-S11	109.2(2)
S4-Ba2-S4	123.3(2)	S8-Ba3-S11	148.96(13)
S4-Ba2-S4	175.80(19)	S8-Ba3-S11	148.96(13)
S10-Ba2-S4	120.90(16)	S1-Ba3-S11	55.23(15)
S8-Ba2-S4	88.38(16)	S1-Ba3-S11	55.23(15)
S8-Ba2-S4	62.72(16)	S7–Ba3–S5	119.32(15)
S6-Ba2-S4	117.83(15)	S7–Ba3–S5	60.54(14)
S6-Ba2-S4	63.40(14)	S12–Ba3–S5	90.82(9)
S9-Ba2-S4	90.82(15)	S8-Ba3-S5	119.18(14)
S9-Ba2-S4	64.09(14)	S8-Ba3-S5	62.90(14)
S4-Ba2-S4	175.80(19)	S1-Ba3-S5	60.50(15)
S4-Ba2-S4	123.3(2)	S1-Ba3-S5	117.46(15)
S10-Ba2-S4	120.90(16)	S11–Ba3–S5	89.06(9)
S8-Ba2-S4	62.72(16)	S7-Ba3-S5	60.54(14)
S8-Ba2-S4	88.38(16)	S7-Ba3-S5	119.32(15)
S6-Ba2-S4	63.40(14)	S12–Ba3–S5	90.81(9)
S6-Ba2-S4	117.83(15)	S8-Ba3-S5	62.90(14)
S4–Ba2–S4	54.5(2)	S8-Ba3-S5	119.17(14)
S7–Ba3–S7	58.8(2)	S1-Ba3-S5	117.46(15)
S7–Ba3–S12	58.11(15)	S1-Ba3-S5	60.50(15)
S7–Ba3–S12	58.11(15)	S11–Ba3–S5	89.06(9)
S7–Ba3–S8	91.68(17)	S5-Ba3-S5	177.84(19)
S7–Ba3–S8	119.49(19)	S7–Ba3–S7	122.8(2)
S12–Ba3–S8	61.44(18)	S7–Ba3–S7	176.66(18)
S7–Ba3–S8	119.49(19)	S12–Ba3–S7	125.18(17)
S7–Ba3–S8	91.68(17)	S8-Ba3-S7	63.77(17)
S12–Ba3–S8	61.44(18)	S8-Ba3-S7	89.78(18)
S8-Ba3-S8	56.3(2)	S1-Ba3-S7	87.95(15)
S7–Ba3–S1	116.47(17)	S1-Ba3-S7	61.39(14)
S7–Ba3–S1	88.71(16)	S11–Ba3–S7	116.50(15)
S12-Ba3-S1	144.99(15)	S5-Ba3-S7	117.69(14)
S8-Ba3-S1	148.5(2)	S5-Ba3-S7	62.33(14)
S8-Ba3-S1	113.77(17)	S7–Ba3–S7	176.66(18)
S7–Ba3–S1	88.71(16)	S7–Ba3–S7	122.8(2)
S7–Ba3–S1	116.47(17)	S12-Ba3-S7	125.18(16)
S12-Ba3-S1	144.99(15)	S8–Ba3–S7	89.78(18)
S8-Ba3-S1	113.77(17)	S8–Ba3–S7	63.77(17)
S8-Ba3-S1	148.5(2)	S1-Ba3-S7	61.39(14)

S1–Ba3–S7	87.95(15)	S3–Ga3–S6	107.3(3)
S11–Ba3–S7	116.50(16)	S2–Ga3–S6	104.6(3)
S5–Ba3–S7	62.33(15)	S12–Ga4–S8	105.9(3)
S5–Ba3–S7	117.69(14)	S12–Ga4–S4	109.8(3)
S7–Ba3–S7	55.4(2)	S8–Ga4–S4	112.2(3)
S7–Ga1–S9	126.7(3)	S12–Ga4–S2	109.9(3)
S7–Ga1–S5	103.3(3)	S8–Ga4–S2	109.8(3)
S9–Ga1–S5	108.9(3)	S4–Ga4–S2	109.0(3)
S7–Ga1–S2	108.2(3)	S1–Ga5–S11	113.8(3)
S9–Ga1–S2	104.5(3)	S1–Ga5–S7	109.1(2)
S5–Ga1–S2	102.9(3)	S11–Ga5–S7	105.4(3)
S10–Ga2–S3	104.9(3)	S1–Ga5–S6	110.1(2)
S10–Ga2–S9	114.4(3)	S11–Ga5–S6	109.8(2)
S3–Ga2–S9	108.5(3)	S7–Ga5–S6	108.4(2)
S10–Ga2–S5	109.6(3)	S1–Ga6–S4	126.9(2)
S3–Ga2–S5	109.3(3)	S1–Ga6–S6	109.0(2)
S9–Ga2–S5	109.9(3)	S4–Ga6–S6	101.5(2)
S8–Ga3–S3	126.1(4)	S1–Ga6–S5	105.2(2)
S8–Ga3–S2	109.6(3)	S4–Ga6–S5	107.8(2)
S3–Ga3–S2	104.2(3)	S6–Ga6–S5	104.7(2)
S8–Ga3–S6	103.2(3)		

Symmetry transformations used to generate equivalent atoms:

							$V_i = \sum_i S_{ij}$
		B	a1	Gal		Ga2	$z_i = \sum_i s_{ij}$
S 1	R_{ij} (Å)	3.4358×2	3.6673×2	2.2317		2.2711	
	S_{ij} (vu)	0.1766	0.1179	0.8011		0.7384	1.9282
	s_{ij} (vu)	0.1623	0.1623	0.8053		0.6895	2
S2	R_{ij} (Å)	3.6264×2		2.334	2.3357	2.3215	
	S_{ij} (vu)	0.1266		0.6481	0.6459	0.6652	2.2009
	s_{ij} (vu)	0.0158		0.6947	0.6947	0.5789	2
S3	R_{ij} (Å)	3.5136×2	3.5714×2	2.2284		2.2586	
	S_{ij} (vu)	0.1542	0.1394	0.8065		0.7577	1.9268
	s_{ij} (vu)	0.1263	0.1263	0.8053		0.6895	2
S4	R_{ij} (Å)	3.4209×2				2.2567	
	S_{ij} (vu)	0.1813				0.7606	1.9035
	s_{ij} (vu)	0.4789				1.0421	2
V	$V_j = \sum_j S_{ij}$	1.8	104	3.0)41	3.0615	BSI=0.124
Z	$i_j = \sum_j S_{ij}$, 4	2	-	3	3	GII=0.120

Table S3a. Selected Bond Lengths, Experimental Bond Valences, Theoretical Bond Valences,Bond Valence Sums, and BSI and GII Indices for α -BaGa₄S₇.

										$V_i = \sum_i S_{ij}$
		Ba	1	Ba	12	Gal	Ga2	Ga3	Ga4	$z_i = \sum_i s_{ij}$
S1	R_{ij} (Å)	3.5904×2						2.2477		
	S_{ij} (vu)	0.1349						0.775		1.91
	s _{ij} (vu)	0.4771						1.0459		2
S2	R_{ij} (Å)			3.5530×2	3.4787×2	2.2272	2.2617			
	S_{ij} (vu)			0.144	0.1639	0.8085	0.7528			1.94
	s _{ij} (vu)			0.1463	0.1463	0.7974	0.6173			2
S3	R_{ij} (Å)	3.5846×2	3.5076×2			2.2243		2.2672		
	S_{ij} (vu)	0.1362	0.1558			0.8134		0.7443		1.94
	s _{ij} (vu)	0.1244	0.1244			0.8091		0.6932		2
S4	R_{ij} (Å)			3.6289×2		2.338		2.334	2.3201	
	S_{ij} (vu)			0.1261		0.6428		0.6482	0.6672	2.18
	s _{ij} (vu)			0.0325		0.6836		0.5677	0.6836	2
S5	R_{ij} (Å)			3.5635×2	3.5149×2		2.2481		2.229	
	S_{ij} (vu)			0.1413	0.1539		0.7743		0.8056	1.95
	s _{ij} (vu)			0.1463	0.1463		0.6173		0.7974	2
S 6	R_{ij} (Å)	3.5994×2				2.3353	2.3365		2.33	
	S_{ij} (vu)	0.1328				0.6464	0.6448		0.6535	2.19
	s _{ij} (vu)	0.0252				0.7099	0.5298		0.7099	2
S 7	R_{ij} (Å)			3.3952			2.2416			
	S_{ij} (vu)			0.1896			0.7849			1.89
	s _{ij} (vu)			0.7645			1.2355			2
S 8	R_{ij} (Å)	3.4559×2	3.6416×2					2.2425	2.2279	
	S_{ij} (vu)	0.1706	0.1233					0.7833	0.8075	1.96
	s_{ij} (vu)	0.1244	0.1244					0.6932	0.8091	2
V_{j}	$=\sum_{j}S_{ij}$	1.79	986	1.77	754	3.0306	3.0797	3.0881	3.0741	BSI=0.158
Z_{f}	$=\sum_{j}S_{ij}$	2		2		3	3	3	3	GII=0.123

Table S3b. Selected Bond Lengths, Experimental Bond Valences, Theoretical Bond Valences,Bond Valence Sums, and BSI and GII Indices for β -BaGa₄S₇.

														$V_i = \sum_i S_{ij}$
		Ba	1	В	a2	В	a3	Gal	Ga2	Ga3	Ga4	Ga5	Ga6	$z_i = \sum_i s_{ij}$
S1	R_{ij} (Å)	3.4826×2				3.563×2						2.2494	2.2286	
	S_{ij} (vu)	0.1628				0.1415						0.7722	0.8062	1.88
	s _{ij} (vu)	0.1594				0.0894						0.6873	0.8151	2
S 2	$R_{ij}(\text{\AA})$	3.608×2						2.3368		2.3314	2.3453			
	S_j (vu)	0.1308						0.6444		0.6517	0.6332			2.06
	s _{ij} (vu)	0						0.6617		0.7496	0.5887			2
S3	$R_{ij}(\text{\AA})$	3.5328×2	3.5762×2						2.2562	2.2334				
	S _{ij} (vu)	0.1491	0.1382						0.7614	0.7983				1.86
	s _{ij} (vu)	0.1149	0.1149						0.676	0.8645				2
S4	$R_{ij}(\text{\AA})$			3.6494×2	3.4227×2						2.2638		2.2391	
	S_{ij} (vu)			0.1217	0.1807						0.7495		0.7889	1.78
	s _{ij} (vu)			0.1633	0.1633						0.5589		0.7878	2
S5	$R_{ij}(\text{\AA})$					3.6216×2		2.3227	2.3353				2.3326	
	S_{ij} (vu)					0.1277		0.6636	0.6464				0.6501	2.09
	s _{ij} (vu)					-0.0177		0.714	0.6134				0.708	2
S 6	$R_{ij}(\text{\AA})$			3.6204×2						2.3324		2.3229	2.3217	
	S_{ij} (vu)			0.128						0.6503		0.6632	0.6649	2.11
	s _{ij} (vu)			0.0645						0.621		0.5611	0.689	2
S 7	$R_{ij}(\text{\AA})$					3.4545×2	3.6409×2	2.2208				2.2636		
	S_{ij} (vu)					0.171	0.1235	0.8194				0.7498		1.91
	s _{ij} (vu)					0.1117	0.1117	0.8435				0.7096		2
S 8	$R_{ij}(\text{\AA})$			3.5715×2		3.5565×2				2.2266	2.2592			
	S_{ij} (vu)			0.1394		0.1431				0.8096	0.7567			1.85
	s _{ij} (vu)			0.2084		0.1072				0.7649	0.604			2
S9	$R_{ij}(\text{\AA})$	3.6333×2		3.4226×2				2.2324	2.2495					
	S_{ij} (vu)	0.1251		0.1808				0.8	0.7721					1.88
	s _{ij} (vu)	0.1191		0.1503				0.7808	0.6802					2
S10	$R_{ij}(\text{\AA})$	3.5254		3.5041					2.2546					
	S_{ij} (vu)	0.1511		0.1568					0.764					1.84
	s _{ij} (vu)	0.4692		0.5004					1.0303					2
S11	$R_{ij}(\text{\AA})$	3.4508				3.609						2.2515		
	S_{ij} (vu)	0.1721				0.1306						0.7689		1.84
	s _{ij} (vu)	0.5141				0.444						1.0419		2
S12	$R_{ij}\left(\mathrm{\AA}\right)$	3.4826×2				3.4854					2.2412			
	S_{ij} (vu)	0.1628				0.162					0.7855			1.90
	s _{ij} (vu)	0.1594				0.7516					1.2484			2
Vj	$=\sum_{j}S_{ij}$	1.80	032	1.7	95	1.7	782	3.0701	3.0826	3.0321	3.0469	3.0945	3.0456	BSI=0.161
Zj ⁻	$=\sum_{i}S_{ij}$	2	!	2	2		2	3	3	3	3	3	3	GII=0.133

Table S3c. Selected Bond Lengths, Experimental Bond Valences, Theoretical Bond Valences, BondValence Sums, and BSI and GII Indices for γ -BaGa₄S₇.

Irrep	Isotropy Subgroup	Dimension	Amplitude (Å)
Γ_1^+	<i>Pmmn</i> (No. 59)	12	0.4656
Γ_4^-	<i>Pmn</i> 2 ₁ (No. 31)	7	1.4766

Table S4a. Summary of the mode decomposition of α -BaGa₄S₇, indicating the amplitudes (Å) of all intervening irrep distortion components.

Irrep	Isotropy Subgroup	Dimension	Amplitude (Å)
Γ_1^+	<i>Pnma</i> (No. 62)	19	9.1434
Γ_3^-	<i>Pmc</i> 2 ₁ (No. 26)	19	8.2889

Table S4b. Summary of the mode decomposition of θ -BaGa₄S₇, indicating the amplitudes (Å) of all intervening irrep distortion components.

Atom	Wyckoff Site	X	У	Z
Ba(1)	2 <i>a</i>	0.750000	0.750000	0.836820
Ga(1)	4f	0.496910	0.750000	0.189080
Ga(2)	4f	0.369250	0.750000	0.676620
S (1)	4f	0.637330	0.750000	0.311330
S(2)	4f	0.510390	0.750000	0.821230
S(3)	4f	0.354730	0.750000	0.318150
S(4)	2 <i>b</i>	0.250000	0.750000	0.899810

Table S5a. Occupied Wyckoff positions and site-symmetries for the paraelectric centrosymmetric α -BaGa₄S₇ structure in space group *Pmmn*.

Atom	Wyckoff Site	X	У	Z
Ba(1)	4 <i>c</i>	0.607250	0.250000	0.837830
Ga(1)	8 <i>d</i>	0.093120	0.507520	0.311060
Ga(2)	8 <i>d</i>	0.072610	0.635170	0.825950
S(1)	4 <i>c</i>	0.368870	0.250000	0.113230
S(2)	8 <i>d</i>	0.140810	0.642620	0.166960
S(3)	8 <i>d</i>	0.122590	0.365530	0.180370

WP		Atom	Atomic Displacements				
			u _x	u _y	uz	u	
2a	(0,y,z)	Ba1	0	0.0056	0.0236	0.14	
4b	(x,y,z)	Gal	0.0016	0.0013	-0.0627	0.37	
4b	(x,y,z)	Ga2	0.0003	0.0041	-0.0794	0.47	
4b	(x,y,z)	S1	-0.0024	0.0012	0.0372	0.22	
4b	(x,y,z)	S2	-0.0066	-0.0065	0.0443	0.28	
4b	(x,y,z)	S3	0.0091	-0.0075	0.0289	0.22	
2a	(0,y,z)	S4	0	0.032	0.0402	0.31	

Table S6a. Atomic displacement in the distortion of the α -BaGa₄S₇.

	W/D	Atom	Atomic Displacements				
	**1		u _x	u _y	uz	u	
2a	(0,y,z)	Bal	0	-0.0951	-0.0541	0.87	
2b	(1/2,y,z)	Ba1_2	0	0.0422	-0.0949	1.16	
4c	(x,y,z)	Gal	-0.1381	-0.0503	0.1558	2.76	
4c	(x,y,z)	Ga1_2	0.1369	-0.2231	0.0953	2.69	
4c	(x,y,z)	Ga2	-0.136	-0.0887	0.1881	3.05	
4c	(x,y,z)	Ga2_2	0.1349	-0.2211	0.0794	2.59	
2a	(0,y,z)	S 1	0	-0.055	-0.0682	0.88	
2b	(1/2,y,z)	S1_2	0	0.1447	-0.0465	1.05	
4c	(x,y,z)	S2	-0.0073	0.0946	-0.0876	1.20	
4c	(x,y,z)	S2_2	0.0078	-0.0666	-0.0479	0.71	
4c	(x,y,z)	S3	-0.0002	0.0839	-0.064	0.92	
4c	(x,y,z)	S3_2	0.0019	-0.056	-0.0629	0.82	
4c	(x,y,z)	S4	-0.0047	-0.0828	-0.0755	1.03	
4c	(x,y,z)	S4_2	0.0029	0.0729	-0.0488	0.73	

Table S6b. Atomic displacement in the distortion of the ${\it B}\mbox{-}BaGa_4S_7.$

Figure S1. The Powder XRD patterns of θ -BaGa₄S₇.

Figure S2a. The EDS spectra of β -BaGa₄S₇.

Figure 2b. The EDS spectra of γ -BaGa₄S₇.

Figure S3. the coordination of Ba atoms in the α -, β - and γ -BaGa₄S₇.

Figure S4a. Comparison between the centrosymmetric (*Pmmn*) and non-centrosymmetric (*Pmn* 2_1) structures projected down the *a*-axis, **a** and **e**, the *b*-axis, **b** and **f**, and the c-axis, **c** and **g**, respectively.

Figure S4b. Comparison between the centrosymmetric (*Pnma*) and non-centrosymmetric (*Pmc* 2_1) structures projected down the a-axis, **a** and **e**, the *b*-axis, **f** and **g**, and the c-axis, **c** and **d**, respectively.

Figure S5a. Atomic displacements patterns from the centrosymmetric (top column) to polar α -BaGa₄S₇ structure (bottom column) for atoms belonging to the 2*a*, 2*b* and 4*f* Wyckoff positions projected about different crystallographic directions.

Pmmn

Figure S5b. Atomic displacements patterns from the centrosymmetric (top column) to polar β -BaGa₄S₇ structure (bottom column) for atoms belonging to the 4*c* and 8*d* Wyckoff positions projected about different crystallographic directions.

27