Supporting Information

Li_{6.58}Na_{7.43}Sr₄(B₉O₁₈)(B₁₂O₂₄)Cl: Unprecedented combination of the largest two highly polymerized isolated B-O clusters with novel isolated B₉O₁₈ FBB

Feixiang Wang^{a,b}, Yun Yang^{*a,b}, Congcong Jin^{a,b}, Shilie Pan^{*a,b}

^aResearch Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

*Corresponding authors: yangyun@ms.xjb.ac.cn, slpan@ms.xjb.ac.cn.

Table of Contents

- Table S1
 Atomic coordinates and equivalent isotropic displacement parameters.
- Table S2Selectedbondlengths[Å]andangles[deg]forLi6.58Na7.43Sr4(B9O18)(B12O24)Cl.
- Table S3Basic information of anhydrous borates containing two kinds of isolatedB-O clusters.
- Table S4Basic information of anhydrous borates with petal-like B12O24 clusters.
- Table S5 The assignments of the IR absorption peaks for $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl.$
- Fig. S1 Coordination polyhedra and arrangement mode of the (a) Li(1); (b) Na(1);(c) Sr(2) and (d) Sr(1) atoms in the title compound.
- Fig. S2 The $[B_9O_{18}]^{9-}$ group in Na₁₁B₂₁O₃₆X₂ (X = Cl, Br) acting as a connecting unit.
- Fig. S3 Elemental analysis of Li_{6.58}Na_{7.43}Sr₄(B₉O₁₈)(B₁₂O₂₄)Cl. Energy dispersive
 X-ray spectroscope (EDS) was performed to verify the presence of the corresponding elements (except Li) in the compound.
- Fig. S4 The structural transformation of space group from $LiNa_2Sr_8(B_{12}O_{24})F_6Cl$ to $Ca_6Li_2Na_8Be_8(BO_3)_8(B_{12}O_{24})F_2$ to $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$.
- Fig. S5 The BO₃ and $B_{12}O_{24}$ groups in $M_3LiNa_4Be_4B_{10}O_{24}F$ (M = Sr, Cd, Ca) with the lamellar arrangement.
- Fig. S6 The infrared spectrum of $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$
- Fig. S7 The X-ray diffraction patterns of Li_{6.58}Na_{7.43}Sr₄(B₉O₁₈)(B₁₂O₂₄)Cl before and after melting.

Table S1Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters(Å² $\times 10^3$) and BVS for Li_{6.58}Na_{7.43}Sr₄(B₉O₁₈)(B₁₂O₂₄)Cl. U(eq) is defined as one thirdof the trace of the orthogonalized U_{ij} tensor.^{a,b}

Atom	х	у	Z	U(eq)	BVS
Li(1)	2983(8)	3669(9)	5951(2)	19(1)	1.06
Na(1)	6000(2)	6512(2)	6879(1)	17(1)	1.05
Na(2A)/Li(2A)	3333	6667	5130(1)	14(1)	1.16
Sr(1)	6667	3333	6294(1)	11(1)	1.77
Sr(2)	0	0	5954(1)	11(1)	2.07
B(1)	8488(5)	6823(5)	4999(2)	9(1)	3.05
B(2)	6079(5)	5927(4)	5651(2)	7(1)	3.01
B(3)	2382(4)	2386(5)	6994(2)	8(1)	2.99
B(4)	4833(6)	2657(6)	7500	7(1)	3.05
O(1)	10062(3)	7857(3)	5278(1)	9(1)	2.05
O(2)	7289(3)	5681(3)	5408(1)	10(1)	2.05
O(3)	5810(3)	7169(3)	5443(1)	11(1)	2.12
O(4)	5238(3)	5010(3)	6082(1)	9(1)	2.04
O(5)	1639(3)	2426(3)	6531(1)	10(1)	2.10
O(6)	1754(4)	2547(5)	7500	11(1)	2.05
O(7)	3793(3)	2242(3)	6998(1)	10(1)	1.99
O(8)	5583(4)	1621(4)	7500	13(1)	1.95
Cl(1)	3333	6667	7500	28(1)	0.65

^a Bond valences calculated with the program Bond Valence Calculator Version 2.00, Hormillosa, C., Healy, S., Stephen, T. McMaster University (1993).

^b Valence sums calculated with the formula: $S_i = \exp[(R_0-R_i)/B]$, where $S_i =$ valence of bond "*i*" and B = 0.37.

Table	S2	Selected	bond	lengths	[Å]	and	angles	[deg.]	for
Li _{6.58} Na	a7.43Sr4(1	$B_9O_{18})(B_{12}O_{24})$)Cl.						

Li(1)-O(4)	1.855(7)	Sr(1)-O(7)#1	2.897(2)
Li(1)-O(5)	1.857(7)	Sr(1)-O(7)#2	2.897(2)
Li(1)-O(1)#2	2.019(7)	Sr(2)-O(1)#1	2.607(2)
Li(1)-O(3)#10	2.186(7)	Sr(2)-O(1)#3	2.607(2)
Na(1)-O(4)	2.285(3)	Sr(2)-O(1)#4	2.607(2)
Na(1)-O(5)#10	2.344(3)	Sr(2)-O(5)	2.439(2)
Na(1)-O(6)#10	2.648(3)	Sr(2)-O(5)#5	2.439(2)
Na(1)-O(7)#2	2.450(3)	Sr(2)-O(5)#6	2.439(2)
Na(1)-O(8)#2	2.480(3)	B(1)-O(1)	1.457(4)
Na(1)-Cl(1)	2.9698(15)	B(1)-O(1)#11	1.466(4)
Na(2A)-O(2)#11	2.357(3)	B(1)-O(2)	1.475(4)
Na(2A)-O(2)#12	2.357(3)	B(1)-O(3)#14	1.482(4)
Na(2A)-O(2)#13	2.357(3)	B(2)-O(2)	1.388(4)
Na(2A)-O(3)	2.243(3)	B(2)-O(3)	1.394(4)
Na(2A)-O(3)#3	2.243(3)	B(2)-O(4)	1.330(4)
Na(2A)-O(3)#10	2.243(3)	B(3)-O(5)	1.333(4)
Sr(1)-O(2)	2.914(2)	B(3)-O(6)	1.401(4)
Sr(1)-O(2)#1	2.914(2)	B(3)-O(7)	1.384(4)
Sr(1)-O(2)#2	2.914(2)	B(4)-O(7)	1.485(4)
Sr(1)-O(4)#1	2.558(2)	B(4)-O(7)#8	1.485(4)
Sr(1)-O(4)#2	2.558(2)	B(4)-O(8)	1.446(6)
Sr(1)-O(4)	2.558(2)	B(4)-O(8)#2	1.450(6)
Sr(1)-O(7)	2.897(2)		
O(1)#1-Li(1)-O(3)#3	67.3(2)	O(7)#1-Sr(1)-O(2)#1	120.15(7)
O(4)-Li(1)-O(1)#1	121.3(4)	O(7)-Sr(1)-O(2)	120.15(7)
O(4)-Li(1)-O(3)#3	128.5(4)	O(7)-Sr(1)-O(2)#1	86.42(7)
O(4)-Li(1)-O(5)	118.1(3)	O(7)-Sr(1)-O(2)#2	150.58(7)
O(5)-Li(1)-O(1)#1	106.4(3)	O(7)#2-Sr(1)-O(2)#1	150.58(7)
O(5)-Li(1)-O(3)#3	104.0(3)	O(7)#1-Sr(1)-O(2)#2	86.42(7)
O(4)-Na(1)-O(5)#10	100.71(10)	O(7)#1-Sr(1)-O(7)#2	88.68(7)
O(4)-Na(1)-O(6)#10	156.73(10)	O(7)-Sr(1)-O(7)#2	88.68(7)
O(4)-Na(1)-O(7)#2	92.98(10)	O(7)#1-Sr(1)-O(7)	88.68(7)
O(4)-Na(1)-O(8)#2	99.11(9)	O(1)#3-Sr(2)-O(1)#1	84.50(8)

O(5)#10-Na(1)-O(6)#10	56.02(8)	O(1)#3-Sr(2)-O(1)#4	84.50(8)
O(5)#10-Na(1)-O(7)#2	92.75(10)	O(1)#4-Sr(2)-O(1)#1	84.50(8)
O(5)#10-Na(1)-O(8)#2	144.64(12)	O(5)-Sr(2)-O(1)#1	75.88(8)
O(7)#2-Na(1)-O(6)#10	88.74(11)	O(5)-Sr(2)-O(1)#3	120.27(8)
O(7)#2-Na(1)-O(8)#2	57.17(10)	O(5)#6-Sr(2)-O(1)#3	75.88(7)
O(8)#2-Na(1)-O(6)#10	101.27(9)	O(5)#5-Sr(2)-O(1)#1	120.27(8)
O(4)-Na(1)-Cl(1)	116.74(8)	O(5)#5-Sr(2)-O(1)#3	145.90(8)
O(5)#10-Na(1)-Cl(1)	102.76(8)	O(5)#6-Sr(2)-O(1)#1	145.90(8)
O(6)#10-Na(1)-Cl(1)	72.95(8)	O(5)-Sr(2)-O(1)#4	145.90(8)
O(7)#2-Na(1)-Cl(1)	142.51(8)	O(5)#5-Sr(2)-O(1)#4	75.88(7)
O(8)#2-Na(1)-Cl(1)	93.93(8)	O(5)#6-Sr(2)-O(1)#4	120.27(8)
O(2)#12-Na(2A)-O(2)#13	92.16(12)	O(5)#5-Sr(2)-O(5)#6	90.18(8)
O(2)#12-Na(2A)-O(2)#11	92.16(12)	O(5)-Sr(2)-O(5)#6	90.18(8)
O(2)#11-Na(2A)-O(2)#13	92.16(12)	O(5)-Sr(2)-O(5)#5	90.18(8)
O(3)-Na(2A)-O(2)#13	97.58(9)	O(1)-B(1)-O(1)#11	112.8(3)
O(3)#3-Na(2A)-O(2)#12	97.58(9)	O(1)#11-B(1)-O(2)	111.2(3)
O(3)#10-Na(2A)-O(2)#11	97.58(9)	O(1)-B(1)-O(2)	108.0(3)
O(3)#10-Na(2A)-O(2)#13	153.17(11)	O(1)-B(1)-O(3)#14	111.9(3)
O(3)-Na(2A)-O(2)#12	153.17(11)	O(1)#11-B(1)-O(3)#14	104.7(3)
O(3)#10-Na(2A)-O(2)#12	62.65(8)	O(2)-B(1)-O(3)#14	108.0(3)
O(3)#3-Na(2A)-O(2)#11	153.17(11)	O(2)-B(2)-O(3)	118.5(3)
O(3)-Na(2A)-O(2)#11	62.65(8)	O(4)-B(2)-O(2)	119.7(3)
O(3)#3-Na(2A)-O(2)#13	62.65(8)	O(4)-B(2)-O(3)	121.7(3)
O(3)#3-Na(2A)-O(3)	109.11(10)	O(5)-B(3)-O(6)	119.3(3)
O(3)#10-Na(2A)-O(3)	109.11(10)	O(5)-B(3)-O(7)	122.6(3)
O(3)#10-Na(2A)-O(3)#3	109.11(10)	O(7)-B(3)-O(6)	118.1(3)
O(2)#2-Sr(1)-O(2)	71.26(7)	O(7)#8-B(4)-O(7)	110.7(4)
O(2)#2-Sr(1)-O(2)#1	71.26(7)	O(8)-B(4)-O(7)	107.2(3)
O(2)-Sr(1)-O(2)#1	71.26(7)	O(8)#2-B(4)-O(7)	109.2(3)
O(7)#2-Sr(1)-O(2)#2	120.15(7)	O(8)-B(4)-O(7)#8	107.2(3)
O(7)#1-Sr(1)-O(2)	150.58(7)	O(8)#2-B(4)-O(7)#8	109.2(3)
O(7)#2-Sr(1)-O(2)	86.42(7)	O(8)-B(4)-O(8)#2	113.3(4)

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x-y,z #2 -x+y+1,-x+1,z #3 -x+y,-x+1,z #4 x-1,y-1,z #5 -x+y,-x,z #6 -y,x-y,z #7 -y+1,x-y+1,-z+3/2 #8 x,y,-z+3/2 #9 -x+y,-x+1,-z+3/2 #10 -y+1,x-y+1,z #11 y,-x+y+1,-z+1 #12 x-y,x,-z+1 #13 -x+1,-y+1,-z+1 #14 x-y+1,x,-z+1

			B-O Clusters		Cation	
No.	Chemical Formula ^a	Space	(I-B-O + II-B-O +	NB ^b	/Boron	Refer
		Group	III-B-O)		Ratio	ence
1	Ho ₃₁ O ₂₇ (BO ₃) ₃ (BO ₄) ₆	R3	[BO ₃]+[BO ₄]	2	3.40	[1]
2	Ni ₇ U(BO ₃) ₂ (BO ₄) ₂ O ₂	Pnnm	[BO ₃]+[BO ₄]	2	2.00	[2]
3	Al ₈ (BO ₃) ₄ (B ₂ O ₅)F ₈	P4 ₂ /nmc	$[BO_3]+[B_2O_5]$	3	1.50	[3]
4	Ba ₃ Zn(BO ₃)(B ₂ O ₅)F	$P2_{1}/c$	$[BO_3]+[B_2O_5]$	3	1.33	[4]
5	$Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$	<i>C</i> 2/ <i>c</i>	$[BO_3]+[B_2O_5]$	3	1.50	[4]
6	$Ba_2Sc_2(BO_3)_2(B_2O_5)$	$P2_{1}/c$	$[BO_3]+[B_2O_5]$	3	1.00	[5]
7	$Ba_5(BO_3)_2(B_2O_5)$	<i>C</i> 2/ <i>c</i>	$[BO_3]+[B_2O_5]$	3	1.20	[6]
8	Cu15(BO3)6(B2O5)2O2	$P\overline{1}$	$[BO_3]+[B_2O_5]$	3	1.50	[7]
9	$Cu_9Ti_2(BO_3)_2(B_2O_5)_2O_6$	$P\overline{1}$	$[BO_3]+[B_2O_5]$	3	1.83	[8]
10	$K_4Sr_4(UO_2)_{13}(BO_3)_2(B_2O_5)_2O_{12}$	$P\overline{1}$	$[BO_3]+[B_2O_5]$	3	1.33	[9]
11	LiNa5Be12(BO3)6(B2O5)3	Pc	$[BO_3]+[B_2O_5]$	3	1.50	[10]
12	$Na_2Be_4(BO_3)_2(B_2O_5)$	<i>P</i> 1	$[BO_3]+[B_2O_5]$	3	1.50	[10]
13	Pb ₈ (BO ₃) ₂ (B ₂ O ₅)O ₃	Ama2	$[BO_3]+[B_2O_5]$	3	2.00	[11]
14	Pb3Ba7(BO3)5(B2O5)F	$Pmn2_1$	$[BO_3]+[B_2O_5]$	3	1.43	[12]
15	$Sr_2Sc_2(BO_3)_2(B_2O_5)$	$P\overline{1}$	$[BO_3]+[B_2O_5]$	3	1.00	[5]
16	Sr ₂ LiBe(BO ₃)(B ₂ O ₅)	$P2_{1}/c$	$[BO_3]+[B_2O_5]$	3	1.33	[13]
17	Ca10Ge16(BO4)2(B2O7)2O29	Pba2	$[BO_4]+[B_2O_7]$	3	4.33	[14]
18	$CsZn_2B_3O_7/Cs_3Zn_6(BO_3)_3(B_3O_6)_2$	$Cmc2_1$	[BO ₃]+[B ₃ O ₆]	4	1.00	[15]
19	Cs ₃ Zn ₆ (BO ₃) ₃ (B ₃ O ₆) ₂	$Cmc2_1$	$[BO_3]+[B_3O_6]$	4	1.00	[16]

Table S3Basic information of anhydrous borates containing two kinds of isolatedB-O clusters.

20	K ₃ Be ₆ (BO ₃) ₃ (B ₃ O ₆) ₂	$P2_{1}$	$[BO_3]+[B_3O_6]$	4	1.00	[17]
21	La ₄ (BO ₃)(B ₃ O ₈)F ₂	$P2_{1}/c$	[BO ₃]+[B ₃ O ₈]	4	1.00	[18]
22	Ca ₃ Be ₆ (BO ₃) ₂ (B ₃ O ₁₀)F	<i>P</i> 6 ₃ / <i>m</i>	$[BO_3]+[B_3O_{10}]$	4	2.20	[19]
23	α -Pb ₂ Ba ₄ Zn ₄ (B ₂ O ₅)(B ₆ O ₁₃) ₂	<i>P</i> 1	$[B_2O_5]+[B_6O_{13}]$	8	0.71	[20]
24	β -Pb ₂ Ba ₄ Zn ₄ (B ₂ O ₅)(B ₆ O ₁₃) ₂	Сс	$[B_2O_5]+[B_6O_{13}]$	8	0.71	[20]
25	γ -Pb ₂ Ba ₄ Zn ₄ (B ₂ O ₅)(B ₆ O ₁₃) ₂	P3 ₂	$[B_2O_5]+[B_6O_{13}]$	8	0.71	[20]
26	$Ba_2KZn_3(B_3O_6)(B_6O_{13})$	$P\overline{1}$	$[B_2O_5]+[B_6O_{13}]$	9	0.67	[21]
27	$Ba_4K_2Zn_5(B_3O_6)_3(B_9O_{19})$	$P2_{1}/n$	$[B_3O_6]+[B_9O_{19}]$	12	0.61	[22]
28	$Cs_{18}Mg_6(B_5O_{10})_3(B_7O_{14})_2F$	<i>C</i> 2/ <i>c</i>	$[B_5O_{10}]+[B_7O_{14}]$	12	0.83	[23]
29	$Rb_{18}Mg_6(B_5O_{10})_3(B_7O_{14})_2F$	<i>C</i> 2/ <i>c</i>	$[B_5O_{10}]+[B_7O_{14}]$	12	0.83	[23]
30	$Ca_3Na_4LiBe_4B_{10}O_{24}F$	R3	$[BO_3] + [B_{12}O_{24}]$	13	1.20	[24]
31	$Cd_{3}Na_{4}LiBe_{8}(BO_{3})_{8}(B_{12}O_{24})F_{2}$ $Cd_{3}Na_{4}LiBe_{4}B_{10}O_{24}F$ $/Cd_{6}Na_{8}Li_{2}Be_{8}(BO_{3})_{8}(B_{12}O_{24})F_{2}$	R3	$[BO_3] + [B_{12}O_{24}]$	13	1.20	[25]
32	$Sr_{3}Na_{4}LiBe_{4}B_{10}O_{24}F$ / $Sr_{6}Na_{8}Li_{2}Be_{8}(BO_{3})_{8}(B_{12}O_{24})F_{2}$	R3	$[BO_3] + [B_{12}O_{24}]$	13	1.20	[25]
33	$Ba_6Al_4(BO_3)_2(B_6O_{13})(B_6O_{14})$	ΡĪ	$[BO_3]+[B_6O_{13}]$ + $[B_6O_{14}]$	13	0.71	[26]
34	$Ba_4Na_2Zn_4(B_3O_6)_2(B_{12}O_{24})$	$P\overline{1}$	$[B_3O_6]+[B_{12}O_{24}]$	15	0.67	[27]
35	Li _{6.58} Na _{7.43} Sr ₄ (B ₉ O ₁₈)(B ₁₂ O ₂₄)Cl	<i>P</i> 6 ₃ / <i>m</i>	$[B_9O_{18}]+[B_{12}O_{24}]$	21	0.86	This work

^a The compounds on either side of the "/" sign are the same one in the chemical formula column.

 $^{\rm b}$ N_B displays the total number of B atoms in two isolated B-O clusters.

No.	Chemical Formula ^a	Space Group	B-O Clusters	Unit Cell Dime	nsions	Refer ence
1	Li ₃ NaBaB ₆ O ₁₂ /Li ₆ Na ₂ Ba ₂ (B ₁₂ O ₂₄)	R3	[B ₁₂ O ₂₄]	a = 9.462(9) (Å) b = 9.462(9) (Å) c = 18.71(3) (Å)	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$	[28]
2	Li ₃ KB ₄ O ₈ / Li ₉ K ₃ (B ₁₂ O ₂₄)	R3	[B ₁₂ O ₂₄]	$a = 9.2106(12) (\text{\AA})$ $b = 9.2106(12) (\text{\AA})$ $c = 19.705(5) (\text{\AA})$	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[29]
3	$LiNa_2Sr_8(B_{12}O_{24})F_6Cl$	R3	$[B_{12}O_{24}]$	a = 9.677(4) (Å) b = 9.677(4) (Å) c = 24.30(2) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[29]
4	Li ₇ Na ₂ KRb ₂ (B ₁₂ O ₂₄)	R3	$[B_{12}O_{24}]$	a = 9.548(6) (Å) b = 9.548(6) (Å) c = 19.55(2) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[30]
5	Li7.35Na2.36K1.50Cs0.78(B12O24)	R3	[B ₁₂ O ₂₄]	a = 9.479(7) (Å) b = 9.479(7) (Å) c = 19.493(14) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[30]
6	Li6.97Na2.63K1.24Cs1.15(B12O24)	R3	[B ₁₂ O ₂₄]	a = 9.5297(12) (Å) b = 9.5297(12) (Å) c = 19.534(5) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[30]
7	Li7.27Na2.67Rb2.06(B12O24)	R3	[B ₁₂ O ₂₄]	a = 9.4530(9) (Å) b = 9.4530(9) (Å) c = 19.413(3) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[30]
8	$Ca_{3}LiNa_{4}Be_{4}B_{10}O_{24}F$ /Ca_{6}Li_{2}Na_{8}Be_{8}(BO_{3})_{8}(B_{12}O_{24})F_{2}	R3	[BO ₃]+ [B ₁₂ O ₂₄]	$a = 9.2851(11) (\text{\AA})$ $b = 9.2851(11) (\text{\AA})$ $c = 38.042(8) (\text{\AA})$	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[24]
9	$Cd_{3}LiNa_{4}Be_{4}B_{10}O_{24}F$ /Cd_{6}Li_{2}Na_{8}Be_{8}(BO_{3})_{8}(B_{12}O_{24})F_{2}	R3	[BO ₃]+ [B ₁₂ O ₂₄]	a = 9.3019(8) (Å) b = 9.3019(8) (Å) c = 37.782(7) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[25]

Table S4Basic information of anhydrous borates with petal-like $B_{12}O_{24}$ clusters.

10	$Sr_{3}LiNa_{4}Be_{4}B_{10}O_{24}F \\ /Sr_{6}Li_{2}Na_{8}Be_{8}(BO_{3})_{8}(B_{12}O_{24})F_{2}$	R3	[BO ₃]+ [B ₁₂ O ₂₄]	$a = 9.4645(1) (\text{\AA})$ $b = 9.4645(1) (\text{\AA})$ $c = 38.842(8) (\text{\AA})$	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	[25]
11	Li6.58Na7.43Sr4(B9O18)(B12O24)Cl	P6 ₃ /m	$[B_9O_{18}]+$ $[B_{12}O_{24}]$	a = 9.3046(2) (Å) b = 9.3046(2) (Å) c = 24.3239(7) (Å)	$\alpha = 90 \circ$ $\beta = 90 \circ$ $\gamma = 120 \circ$	This work

 $^{\rm a}$ The compounds on either side of the "/" sign are the same one in the chemical formula column.

Table S5The assignments of the IR absorption peaks for $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$

Mode description	$IR (cm^{-1})$
Asymmetric stretching vibration of [BO ₃] groups	1443, 1281, 1234
Asymmetric stretching vibration of [BO ₄] groups	1149, 1092, 1018
Symmetric stretching vibration of [BO ₃] groups	952
Symmetric stretching vibration of [BO ₄] groups	879
Out-of-plane bending of [BO ₃] groups	732, 644
In-plane bending of [BO ₃] groups	590, 517
Bending of [BO ₄] groups	400–500

Fig. S1 Coordination polyhedra and arrangement mode of the (a) Li(1), (b) Na(1), (c) Sr(2), and (d) Sr(1) atoms in the title compound.

Fig. S2 The $[B_9O_{18}]^{9-}$ group in $Na_{11}B_{21}O_{36}X_2$ (X = Cl, Br) acting as a connecting unit.

Fig. S3 Elemental analysis of $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$. Energy dispersive X-ray spectroscope (EDS) was performed to verify the presence of the corresponding elements (except Li) in the compound.

Fig. S4 The structural transformation of space group from $LiNa_2Sr_8(B_{12}O_{24})F_6Cl$ to $Ca_6Li_2Na_8Be_8(BO_3)_8(B_{12}O_{24})F_2$ to $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$. (Considering about the great influence of the B-O clusters on the structure of the compounds, and in order to keep the picture simple and easy to understand, only the arrangement of the B-O polyhedra is shown in the picture.)

Fig. S5 The BO₃ and $B_{12}O_{24}$ groups in $M_3LiNa_4Be_4B_{10}O_{24}F$ (M = Sr, Cd, Ca) with the lamellar arrangement.

Fig. S6 The infrared spectrum of $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$.

Fig. S7 The X-ray diffraction patterns of $Li_{6.58}Na_{7.43}Sr_4(B_9O_{18})(B_{12}O_{24})Cl$ before and after melting.

Reference

- S. A. Hering, A. Haberer, R. Kaindl and H. Huppertz, High-pressure synthesis and crystal structure of the new holmium oxoborate Ho₃₁O₂₇(BO₃)₃(BO₄)₆, *Solid State Sci.*, 2010, **12**, 1993–2002.
- 2 M. Gasperin, Synthese et structure du tetraborouranate de nickel, Ni₇B₄UO₁₆, *Acta Crystallogr. C*, 1989, **45**, 981–983.
- 3 Y. Wang, J. Han, J. B. Huang, Z. H. Yang and S. L. Pan, Al₈(BO₃)₄(B₂O₅)F₈: A Fcontaining aluminum borate featuring two types of isolated B–O groups, *Inorg. Chem.*, 2020, **59**, 810–817.
- M. Mutailipu, X. Su, M. Zhang, Z. H. Yang and S. L. Pan, Ba_{n+2}Zn_n(BO₃)_n(B₂O₅)F_n (n = 1, 2): New members of the zincoborate fluoride series with two kinds of isolated B–O units, *Inorg. Chem. Front.*, 2017, 4, 281–288.
- 5 P. D. Thompson, J. Huang, R. W. Smith and D. A. Keszler, The mixed orthoborate pyroborates Sr₂Sc₂B₄O₁₁ and Ba₂Sc₂B₄O₁₁: Pyroborate geometry, *J. Solid State Chem.*, 1991, **95**, 126–135.
- 6 N. G. Furmanova, B. A. Maksimov, V. N. Molchanov, A. E. Kokh, N. G. Kononova and P. P. Fedorov, Crystal structure of the new barium borate Ba₅(BO₃)₂(B₂O₅), *Crystallogr. Rep.*, 2006, **51**, 219–224.
- 7 H. Behm, Pentadecacopper(II) bisdiborate hexaorthoborate dioxide, *Acta Crystallogr. B*, 1982, **38**, 2781–2784.
- 8 J. Schaefer and K. Bluhm, Synthese und Kristallstruktur von Cu₉Ti₂[B₂O₅]₂[BO₃]₂O₆ — ein Kupfertitanboratpyroboratoxid?, *Z. Anorg. Allg. Chem.*, 1994, **620**, 1583–1588.
- 9 Y. C. Hao, P. Kegler, D. Bosbach, T. E. Albrecht-Schmitt, S. A. Wang and E. V. Alekseev, Divergent structural chemistry of uranyl borates obtained from solid state and hydrothermal conditions, *Cryst. Growth Des.*, 2017, **17**, 5898–5907.
- 10 H. W. Huang, L. J. Liu, S. F. Jin, W. J. Yao, Y. H. Zhang and C. T. Chen, Deepultraviolet nonlinear optical materials: Na₂Be₄B₄O₁₁ and LiNa₅Be₁₂B₁₂O₃₃, *J. Am. Chem. Soc.*, 2013, **135**, 18319–18322.
- H. W. Yu, S. L. Pan, H. P. Wu, W. W. Zhao, F. F. Zhang, H. Y. Li and Z. H. Yang, A new congruent-melting oxyborate, Pb₄O(BO₃)₂ with optimally aligned BO₃ triangles adopting layered-type arrangement, *J. Mater. Chem.*, 2012, 22, 2105–2110.
- 12 W. B. Zhang, W. Q. Jin, S. J. Han, Z. H. Yang and S. L. Pan, Pb₃Ba₇B₇O₂₀F: A new nonlinear optical material exhibiting large second harmonic generation response induced by its unprecedented Pb-B-O framework, *Scr. Mater.*, 2021, **194**, 113700.
- 13 N. Yu and N. Ye, Distrontium lithium beryllium triborate, Sr₂LiBeB₃O₈, *Acta Crystallogr. E*, 2012, **68**, i32.
- 14 X. Xu, C. L. Hu, F. Kong, J. H. Zhang and J. G. Mao, Ca₁₀Ge₁₆B₆O₅₁ and

 $Cd_{12}Ge_{17}B_8O_{58}$: Two types of new 3D frameworks based on BO₄ tetrahedra and 1D $[Ge_4O_{12}]_n$ chains, *Inorg. Chem.*, 2011, **50**, 8861–8868.

- 15 S. G. Zhao, J. Zhang, S. Q. Zhang, Z. H. Sun, Z. S. Lin, Y. C. Wu, M. C. Hong and J. H. Luo, A new UV nonlinear optical material CsZn₂B₃O₇: ZnO4 tetrahedra double the efficiency of second-harmonic generation, *Inorg. Chem.*, 2014, **53**, 2521–2527.
- H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. L. Hou, X. Su, Q. Jing, K. R. Poeppelmeier and J. M. Rondinelli, Cs₃Zn₆B₉O₂₁: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response, *J. Am. Chem. Soc.*, 2014, **136**, 1264–1267.
- S. C. Wang, N. Ye, W. Li and D. Zhao, Alkaline beryllium borate NaBeB₃O₆ and ABe₂B₃O₇ (A = K, Rb) as UV nonlinear optical crystals, *J. Am. Chem. Soc.*, 2010, 132, 8779–8786.
- 18 A. Haberer, R. Kaindl, O. Oeckler and H. Huppertz, A new structure type of RE₄B₄O₁₁F₂: High-pressure synthesis and crystal structure of La₄B₄O₁₁F₂, *J. Solid State Chem.*, 2010, **183**, 1970–1979.
- 19 W. J. Yao, T. Xu, X. X. Jiang, H. W. Huang, X. Y. Wang, Z. S. Lin and C. T. Chen, Ca₃Be₆B₅O₁₆F: The first alkaline-earth beryllium borate with fluorine anions, *Dalton Trans.*, 2014, 43, 9998–10004.
- 20 H. W. Yu, H. P. Wu, Q. Jing, Z. H. Yang, P. S. Halasyamani and S. L. Pan, Polar polymorphism: α -, β -, and γ -Pb₂Ba₄Zn₄B₁₄O₃₁ Synthesis, characterization, and nonlinear optical properties, *Chem. Mater.*, 2015, **27**, 4779–4788.
- 21 S. Busche and K. Bluhm, Zur Synthese und Kristallstruktur von Dibariumkaliumtrizinkborat Ba₂KZn₃(B₃O₆)(B₆O₁₃)/Synthesis and crystal structure of di-barium potassium tri-zinc borate Ba₂KZn₃(B₃O₆)(B₆O₁₃), Z. Naturforsch. B, 1996, **51**, 319–324.
- 22 X. A. Chen, Y. J. Chen, L. Wu, X. A. Chang and W. Q. Xiao, Synthesis, crystal structure, and spectrum properties of a new borate $Ba_4K_2Zn_5(B_3O_6)_3(B_9O_{19})$ with two isolated types of blocks: $3[3\Delta]$ and $3[2\Delta + 1T] + 3\Delta + 3[2\Delta + 1T]$, *Solid State Sci.*, 2014, **27**, 47–54.
- Z. Wang, M. Zhang, X. Su, S. L. Pan, Z. H. Yang, H. Zhang and L. Liu, Q₁₈Mg₆(B₅O₁₀)₃(B₇O₁₄)₂F (Q = Rb and Cs): New borates containing two large isolated polyborate anions with similar topological structures, *Chem. Eur. J.*, 2015, 21, 1414–1419.
- S. Y. Luo, W. J. Yao, P. F. Gong, J. Y. Yao, Z. S. Lin and C. T. Chen, $Ca_3Na_4LiBe_4B_{10}O_{24}F$: A new beryllium borate with a unique beryl borate $\infty^2[Be_8B_{16}O_{40}F_2]$ layer intrabridged by $[B_{12}O_{24}]$ groups, *Inorg. Chem.*, 2014, 53, 8197–8199.
- 25 X. S. Wang, L. J. Liu, M. J. Xia, X. Y. Wang and C. T. Chen, Two isostructural multi-metal borates: Syntheses, crystal structures and characterizations of

M₃LiNa₄Be₄B₁₀O₂₄F (M = Sr, Cd), *Chinese J. Struc. Chem.*, 2015, **34**, 1617–1625.

- X. A. Chen, J. Y. Yue, X. A. Chang and W. Q. Xiao, Synthesis and characterization of a new borate Ba₆Al₄B₁₄O₃₃ with building blocks of AlO₄, Al₄O₁₄, BO₃, B₆O₁₄, and B₆O₁₃, *J. Solid State Chem.*, 2017, 245, 174–183.
- 27 X. A. Chen, Y. J. Chen, C. Sun, X. A. Chang and W. Q. Xiao, Synthesis, crystal structure, spectrum properties, and electronic structure of a new three-borate Ba₄Na₂Zn₄(B₃O₆)₂(B₁₂O₂₄) with two isolated types of blocks: 3[3Δ] and 3[2Δ+1T], *J. Alloys Compd.*, 2013, **568**, 60–67.
- S. J. Chen, S. L. Pan, W. W. Zhao, Z. H. Yang, H. P. Wu and Y. Yang, Synthesis, crystal structure and characterization of a new compound, Li₃NaBaB₆O₁₂, *Solid State Sci.*, 2012, 14, 1186–1190.
- H. P. Wu, H. W. Yu, S. L. Pan, A. Q. Jiao, J. Han, K. Wu, S. J. Han and H. Y. Li, New type of complex alkali and alkaline earth metal borates with isolated (B₁₂O₂₄)^{12–} anionic group, *Dalton Trans.*, 2014, **43**, 4886–4891.
- 30 T. Baiheti, S. J. Han, B. Bashir, Z. H. Yang, Y. Wang, H. H. Yu and S. L. Pan, Four new deep ultraviolet borates with isolated B₁₂O₂₄ groups: Synthesis, structure, and optical properties, *J. Solid State Chem.*, 2019, 273, 112–116.