Electronic Supplementary Information

Experimental section

Materials: Sodium nitrite (NaNO₂, 99.9%), ammonium chloride (NH₄Cl, 99.5%), sodium hydroxide (NaOH, 98%), ethanol (C₂H₆O, 99.9%), sodium salicylate (C₇H₅NaO₃, 99.5%), trisodium citrate dihydrate (C₆H₅Na₃O₇·2H₂O, 99%), p-dimethylaminobenzaldehyde (C₉H₁₁NO, 99%), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O, 99%) and sodium hypochlorite solution (NaClO, 5%) were purchased from Aladdin Co., Ltd. (Shanghai, China). Sulfuric acid (H₂SO₄, 99%), hydrogen peroxide (H₂O₂, 99%), hydrochloric acid (HCl, 99%), hydrazine monohydrate (N₂H₄·H₂O, 99%) and ethyl alcohol (C₂H₅OH, 99%) were bought from Beijing Chemical Corporation. (China). Ti plate (thickness is 0.2 mm, 99.9%) was purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China). All reagents used in this work were analytical grade without further purification.

Preparation of TiO₂ nanosheets array: Firstly, Ti plate $(2.0 \times 3.0 \text{ cm}^2)$ was cleaned by ultrasonication in acetone, ethanol, and water for 15 min, respectively. Then, Ti plate was put into a 50 mL of Teflon-lined autoclave containing 35 mL of 5 M NaOH solution and heated in an electric oven at 180 °C for 24 h. Subsequently, cation exchange of Na⁺ to H⁺ was carried out by immersing the sample into 1 M HCl for 1 h to obtain H₂Ti₂O₅·H₂O nanosheet array, followed by annealing at 500 °C for 2 h.

Preparation of CoB(*a*)**TiO**₂ **nanoarray:** Amorphous CoB was magnetron sputtered onto as-prepared TiO₂ nanoarray. The sputtering chamber was evacuated to about 8×10^{-4} Pa before the sputtering deposition. Ar (50 sccm) was injected to the chamber with a total pressure of 4 Pa and the sputtering voltage was 310 V (direct current voltage). The bias voltage was 60 V and the sputtering time was 5 min. CoB on Ti plate was prepared by the same procedure. The sputtering machine (Z/CM GXZ 05-2020) is purchased from Chengdu CM Photoelectrictechnology Co., Ltd.

Characterizations: XRD data were acquired from a LabX XRD-6100 X-ray diffractometer with a Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm

(SHIMADZU, Japan). SEM images were collected on a Gemini SEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. TEM images were acquired on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer was measured on UV-vis spectrophotometer (SHIMADZU UV-2700). Gaseous products from nitrate reduction reaction were determined by gas chromatography (GC) with SHIMADZU GC-2014 gas chromatograph.

Electrochemical measurements: All electrochemical measurements were carried out on the CHI660E electrochemical workstation (Chenhua, Shanghai). A three-electrode system with an H-type electrolytic cell separated by a Nafion 117 membrane, working electrode of a piece of CoB@TiO₂/TP as, reference electrode of Ag/AgCl, and counter electrode of graphite rod are used for the electrochemical tests under magnetic stirring (250 rpm). Electrolyte is 0.1 M Na₂SO₄ with/without 400 ppm NO₂⁻. The potentials reported in this work were converted to the reversible hydrogen electrode (RHE) via the equation of E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.059 × pH.

Determination of NH₃: NH₃ concentration was spectrophotometrically determined by the indophenol blue method (the obtained electrolyte was diluted 20 times). In detail, 4 mL diluted electrolyte was mixed with 50 µL oxidizing solution containing NaClO (4.5%) and NaOH (0.75 M), 500 µL coloring solution containing C₇H₅O₃Na (0.4 M) and NaOH (0.32 M), and 50 µL 1 wt% Na₂Fe(CN)₅NO·2H₂O aqueous solution for 1 h in darkness. The concentration-absorbance curve (y = 0.4506x +0.0238, R² = 0.9998) was prepared from the UV-vis spectra of the standard NH₄Cl solutions with known concentrations of 0, 1, 2, 3, 4 mL⁻¹ in 0.1 M Na₂SO₄.

Determination of N₂H₄: N₂H₄ was estimated by the Watt and Chrisp method. The color reagent was a solution of 18.15 mg mL⁻¹ of C₉H₁₁NO in the mixed solvent of HCl and C₂H₅OH (V/V: 1/10). In detail, 2 mL electrolyte was added into 2 mL color reagent for 15 min under stirring. The absorbance of such solution was measured to

quantify the hydrazine yields by the standard curve of hydrazine (y = 0.6878x + 0.1066, $R^2 = 0.9998$).

Determination of N₂, H₂: H₂ was quantified by GC.

Calculations of the m_{NH3}, FE and NH₃ yield:

The amount of NH_3 (m_{NH3}) was calculated by the following equation:

$$m_{\rm NH3} = [\rm NH_3] \times \rm V$$

FE of NH₃ formation was calculated by the following equation:

$$FE = (6 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\%$$

NH₃ yield rate is calculated using the following equation:

NH₃ yield = ([NH₃] × V) / (
$$M_{NH3}$$
 × t × A)

Where F is the Faradic constant (96485 C mol⁻¹), [NH₃] is the NH₃ concentration, V is the volume of electrolyte in the anode compartment (40 mL), M_{NH3} is the molar mass of NH₃ molecule, Q is the total quantity of applied electricity, t is the electrolysis time (1 h) and A is the geometric area of working electrode (0.5 × 0.5 cm²).

Fig. S1. SEM image of TP.

Fig. S2. SEM image of TiO₂/TP.

			elements	Ti	0	В	Co	Total
	Ē		Atomatic ratio(%)	27.45	56.16	8.10	8.29	100
s/eV	2-							
cb	Ē							
				ŢŢ,				
	o_)		· · · · · · ·	" 			
	0							keV

Fig. S3. EDX spectrum of CoB@TiO₂/TP.

Fig. S4. (a) UV-vis spectra and (b) corresponding calibration curve for calculation of NH_4^+ concentration.

Fig. S5. (a) UV-vis spectra and (b) corresponding calibration curve for calculation of N_2H_4 concentration.

Fig. S6. LSV curves of CoB/TP, TiO₂/TP, and bare TP in 0.1 M Na₂SO₄ with/without 400 ppm NO₂⁻.

Fig. S7. NH_3 yields and FEs of CoB@TiO₂/TP, CoB/TP, TiO₂/TP, and bare TP in 0.1 M Na_2SO_4 containing 400 ppm NO_2^- at -0.7 V.

Fig. S8. NO_3^- reduction reaction performance measurements of $CoB@TiO_2/TP$: (a) LSV curves in 0.1 M Na_2SO_4 with and without 400 ppm NO_3^- . (b) Chronoamperometry curves and (c) corresponding UV-vis spectra at a potential rang from -0.4 V to -0.9 V. (d) NH₃ yields and FEs at given potentials.

Fig. S9. UV-vis spectra of N_2H_4 detection.

Fig. S10. Chromatograph curves of (a) H_2 and (b) N_2 detected by GC at each given potential.

Fig. S11. NH_3 yields and FEs during alternating cycle tests between NO_2^{-1} -containing and NO_2^{-1} -free 0.1 M Na_2SO_4 at -0.7 V.

Fig. S12. Chronoamperometry curve of CoB@TiO₂/TP during 12-h stability test.

Fig. S13. Time-dependent UV-vis spectra of NH_4^+ during long-term stability test.

Fig. S14. LSV curves of CoB@TiO₂/TP before and after long-term stability test.

Fig. S15. UV-vis spectra of CoB@TiO₂/TP for cycling tests in 0.1 M Na_2SO_4 containing 400 ppm NO_2^- at -0.7 V.

Fig. S16. SEM image of $CoB@TiO_2/TP$ after durability test.

Fig. S17. XRD pattern of CoB@TiO₂/TP after durability test.

Table S1. Comparison of the catalytic performances of $CoB@TiO_2/TP$ with the other reported NO_2 ⁻RR and NO_3 ⁻RR electrocatalysts.

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.	
	$0.1 \text{ M Na}_2 \text{SO}_4$ (400 ppm NaNO ₂)	233.1 μ mol h ⁻¹ cm ⁻²	95.2		
CoB@11O ₂ /1P	0.1 M Na ₂ SO ₄ (400 ppm NaNO ₃)	195.9 μmol h ⁻¹ cm ⁻²	84	I his work	
MnO_2 nanoarray	0.1 M Na ₂ SO ₄ (0.2 M NaNO ₂)	$\begin{array}{c} 8.6\times10^{-12}\mu\text{mol}\\ $h^{-1}\text{cm}^{-2}$ \end{array}$	6	1	
Ni-NSA-V _{Ni}	$0.2 \text{ M Na}_2 \text{SO}_4$ (200 ppm NaNO ₂)	235.5 μmol h ⁻¹ cm ⁻²	88.9	2	
Cobalt-tripeptide complex	1.0 M MOPS (1.0 M NaNO ₂)	$1.1 \ \mu mol \ h^{-1}$ cm ⁻²	90 ± 3	3	
Ni ₂ P/NF	0.1 M PBS (200 ppm NaNO ₂)	158.1 ± 5.4 $\mu mol \ h^{-1} \ cm^{-2}$	90.2 ± 3.0	4	
CoP NA/TM	0.1 M PBS (500 ppm NaNO ₂)	132.7 ± 3.0 µmol h ⁻¹ cm ⁻²	90.0 ± 2.3	5	
Cu ₃ P NA/CF	0.1 M PBS (0.1 M NaNO ₂)	$95.5 \pm 2.1 \ \mu mol$ $h^{-1} \ cm^{-2}$	91.2 ± 2.5	6	
Cu ₈₀ Ni ₂₀	1.0 M NaOH (20 mM NaNO ₂)	/	87.6	7	
Cu phthalocyanine complexes	0.1 M KOH (NaNO ₂)	/	78	8	
$[Co(DIM)Br_2]^+$	0.1 M NaNO ₂	/	88	9	
FeN ₅ H ₂	1.0 M MOPS	/	18	10	
Co ₃ O ₄ @NiO	0.5 M Na ₂ SO ₄ (2.36 mM NaNO ₃)	/	55.0	11	

Co/CoO NSA	0.1 M Na ₂ SO ₄ (200 ppm NaNO ₃)	194.5 μmol h ⁻¹ cm ⁻²	93.8	12
Co ₂ AlO ₄	0.1 M PBS	464.7 μmol h ⁻¹	92.6	13
	(0.1 M NaNO ₃)	cm ²		
Pd nanodots on Zr-	0.1 M Na ₂ SO ₄	$16.99 \ \mu mol \ h^{-1}$	58 1	14
MOF	(500 ppm NO ₃ ⁻)	${ m mg_{cat.}}^{-1}$	50.1	
Ru _x O _y clusters on	0.1 M Na ₂ SO ₄	16.1 μmol h ⁻¹	58.8	15
Ni-MOF	(100 ppm NO ₃ ⁻)	${ m mg_{cat.}}^{-1}$	50.0	
Fe single atom	$0.10 \text{ M K}_2 \text{SO}_4$	$\sim 1176 \ \mu mol \ h^{-1}$	75	16
catalyst	(0.50 M KNO ₃)	cm^{-2}	~75	
Ag@NiO/CC	0.1 M NaOH	135.1 μmol h ⁻¹	75 0	17
	(0.1 M NaNO ₃)	cm^{-2}	/3.8	

References

- R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shi and X. Sun, MnO₂ nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH₃ synthesis applications, *Chem. Commun.*, 2018, **54**, 10340–10342.
- C. Wang, W. Zhou, Z. Sun, Y. Wang, B. Zhang and Y. Yu, Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode, *J. Mater. Chem. A*, 2021, 9, 239–243.
- 3 Y. Guo, J. R. Stroka, B. Kandemir, C. E. Dickerson and K. L. Bren, Cobalt metallopeptide electrocatalyst for the selective reduction of nitrite to ammonium, *J. Am. Chem. Soc.*, 2018, 140, 16888–16892.
- G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo, Q. Kong and X. Sun, Ni₂P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions, *J. Colloid Interface Sci.*, 2022, 606, 1055–1063.
- G. Wen, J. Liang, Q. Liu, T. Li, X. An, F. Zhang, A. A. Alshehri, K. A. Alzahrani,
 Y. Luo, Q. Kong and X. Sun, Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray, *Nano Res.*, 2022, 15, 972–977.
- J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani, D. Ma and X. Sun, High-efficiency electrochemical nitrite reduction to ammonium using a Cu₃P nanowire array under ambient conditions, *Green Chem.*, 2021, 23, 5487–5493.
- 7 L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. Vázquez-Gómez and E. Verlato, Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes, *Electrochim. Acta*, 2013, 89, 488–496.
- 8 N. Chebotareva and T. Nyokong, Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media, *J. Appl. Electrochem.*,

1997, 27, 975–981.

- 9 S. Xu, H.-Y. Kwon, D. C. Ashley, C.-H. Chen, E. Jakubikova and J. M. Smith, Intramolecular hydrogen bonding facilitates electrocatalytic reduction of nitrite in aqueous solutions, *Inorg. Chem.*, 2019, **58**, 9443–9451.
- 10 J. R. Stroka, B. Kandemir, E. M. Matson and K. L. Bren, Electrocatalytic multielectron nitrite reduction in water by an iron complex, ACS Catal., 2020, 10, 13968–13972.
- 11 Y. Wang, C. Liu, B. Zhang and Y. Yu, Self-template synthesis of hierarchically structured Co₃O₄@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. *Sci. China Mater.*, 2020, **63**, 2530–2538.
- 12 Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying schottky contacts. *Sci. China Chem.*, 2020, **63**, 1469–1476.
- 13 Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. A. Alshehri, I. Shakir, P. O. Agboola, S. Yan, B. Zheng, J. Du, Q. Kong and X. Sun, High-efficiency ammonia electrosynthesis on self-supported Co₂AlO₄ nanoarray in neutral media by selective reduction of nitrate. *Chem. Eng. J.*, 2022, **435**, 135104.
- 14 M. Jiang, J. Su, X. Song, P. Zhang, M. Zhu, L. Qin, Z. Tie, J.-L. Zuo and Z. Jin, Interfacial reduction nucleation of noble metal nanodots on redox-active metal– organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia, *Nano Lett.* 2022, 22, 2529–2537.
- 15 J. Qin, K. Wu, L. Chen, X. Wang, Q. Zhao, B. Liu and Z. Ye, Achieving high selectivity for nitrate electrochemical reduction to ammonia over MOF-supported Ru_xO_y clusters, *J. Mater. Chem. A* 2022, **10**, 3963-3969.
- 16 Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong

,Q. Li, I. Gates, S. Siahrostami and H. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, *Nat. Commun.* 2021, **12**, 2870.

17 Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun, L. Zhang, Y. Luo, A. A. Alshehri, M. S. Hamdy, Q. Kong and X. Sun, Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis, *J. Colloid Interface Sci.* 2022, **623**, 513–519.