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Electronic Supplementary Information
Experimental section

Materials: Sodium nitrite (NaNO2, 99.9%), ammonium chloride (NH4Cl, 99.5%), 

sodium hydroxide (NaOH, 98%), ethanol (C2H6O, 99.9%), sodium salicylate 

(C7H5NaO3, 99.5%), trisodium citrate dihydrate (C6H5Na3O7·2H2O, 99%), p-

dimethylaminobenzaldehyde (C9H11NO, 99%), sodium nitroferricyanide dihydrate 

(C5FeN6Na2O·2H2O, 99%) and sodium hypochlorite solution (NaClO, 5%) were 

purchased from Aladdin Co., Ltd. (Shanghai, China). Sulfuric acid (H2SO4, 99%), 

hydrogen peroxide (H2O2, 99%), hydrochloric acid (HCl, 99%), hydrazine 

monohydrate (N2H4·H2O, 99%) and ethyl alcohol (C2H5OH, 99%) were bought from 

Beijing Chemical Corporation. (China). Ti plate (thickness is 0.2 mm, 99.9%) was 

purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China). All reagents 

used in this work were analytical grade without further purification.

Preparation of TiO2 nanosheets array: Firstly, Ti plate (2.0 × 3.0 cm2) was cleaned 

by ultrasonication in acetone, ethanol, and water for 15 min, respectively. Then, Ti 

plate was put into a 50 mL of Teflon-lined autoclave containing 35 mL of 5 M NaOH 

solution and heated in an electric oven at 180 °C for 24 h. Subsequently, cation 

exchange of Na+ to H+ was carried out by immersing the sample into 1 M HCl for 1 h 

to obtain H2Ti2O5·H2O nanosheet array, followed by annealing at 500 °C for 2 h.

Preparation of CoB@TiO2 nanoarray: Amorphous CoB was magnetron sputtered 

onto as-prepared TiO2 nanoarray. The sputtering chamber was evacuated to about 

8×10−4 Pa before the sputtering deposition. Ar (50 sccm) was injected to the chamber 

with a total pressure of 4 Pa and the sputtering voltage was 310 V (direct current 

voltage). The bias voltage was 60 V and the sputtering time was 5 min. CoB on Ti 

plate was prepared by the same procedure. The sputtering machine (Z/CM GXZ 05-

2020) is purchased from Chengdu CM Photoelectrictechnology Co., Ltd.

Characterizations: XRD data were acquired from a LabX XRD-6100 X-ray 

diffractometer with a Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm 
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(SHIMADZU, Japan). SEM images were collected on a Gemini SEM 300 scanning 

electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. TEM 

images were acquired on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, 

Japan) operated at 200 kV. XPS measurements were performed on an ESCALABMK 

II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance 

data of spectrophotometer was measured on UV-vis spectrophotometer (SHIMADZU 

UV-2700). Gaseous products from nitrate reduction reaction were determined by gas 

chromatography (GC) with SHIMADZU GC-2014 gas chromatograph.

Electrochemical measurements: All electrochemical measurements were carried out 

on the CHI660E electrochemical workstation (Chenhua, Shanghai). A three-electrode 

system with an H-type electrolytic cell separated by a Nafion 117 membrane, working 

electrode of a piece of CoB@TiO2/TP as, reference electrode of Ag/AgCl, and 

counter electrode of graphite rod are used for the electrochemical tests under magnetic 

stirring (250 rpm). Electrolyte is 0.1 M Na2SO4 with/without 400 ppm NO2
−. The 

potentials reported in this work were converted to the reversible hydrogen electrode 

(RHE) via the equation of E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.059 × pH.

Determination of NH3: NH3 concentration was spectrophotometrically determined 

by the indophenol blue method (the obtained electrolyte was diluted 20 times). In 

detail, 4 mL diluted electrolyte was mixed with 50 µL oxidizing solution containing 

NaClO (4.5%) and NaOH (0.75 M), 500 µL coloring solution containing C7H5O3Na 

(0.4 M) and NaOH (0.32 M), and 50 µL 1 wt% Na2Fe(CN)5NO·2H2O aqueous 

solution for 1 h in darkness. The concentration-absorbance curve (y = 0.4506x + 

0.0238, R2 = 0.9998) was prepared from the UV-vis spectra of the standard NH4Cl 

solutions with known concentrations of 0, 1, 2, 3, 4 mL−1 in 0.1 M Na2SO4. 

Determination of N2H4: N2H4 was estimated by the Watt and Chrisp method. The 

color reagent was a solution of 18.15 mg mL−1 of C9H11NO in the mixed solvent of 

HCl and C2H5OH (V/V: 1/10). In detail, 2 mL electrolyte was added into 2 mL color 

reagent for 15 min under stirring. The absorbance of such solution was measured to 
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quantify the hydrazine yields by the standard curve of hydrazine (y = 0.6878x + 

0.1066, R2 = 0.9998).

Determination of N2, H2: H2 was quantified by GC.

Calculations of the mNH3, FE and NH3 yield: 

The amount of NH3 (mNH3) was calculated by the following equation:

mNH3 = [NH3] × V

FE of NH3 formation was calculated by the following equation:

FE = (6 × F × [NH3] × V) / (MNH3 × Q) × 100%

NH3 yield rate is calculated using the following equation:

NH3 yield = ([NH3] × V) / (MNH3 × t × A)

Where F is the Faradic constant (96485 C mol−1), [NH3] is the NH3 concentration, V 

is the volume of electrolyte in the anode compartment (40 mL), MNH3 is the molar 

mass of NH3 molecule, Q is the total quantity of applied electricity, t is the 

electrolysis time (1 h) and A is the geometric area of working electrode (0.5 × 0.5 

cm2).



S4

Fig. S1. SEM image of TP.
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Fig. S2. SEM image of TiO2/TP.
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Fig. S3. EDX spectrum of CoB@TiO2/TP.
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Fig. S4. (a) UV-vis spectra and (b) corresponding calibration curve for calculation of 

NH4
+ concentration.
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Fig. S5. (a) UV-vis spectra and (b) corresponding calibration curve for calculation of 

N2H4 concentration.
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Fig. S6. LSV curves of CoB/TP, TiO2/TP, and bare TP in 0.1 M Na2SO4 

with/without 400 ppm NO2
−.
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Fig. S7. NH3 yields and FEs of CoB@TiO2/TP, CoB/TP, TiO2/TP, and bare TP 

in 0.1 M Na2SO4 containing 400 ppm NO2
− at −0.7 V.
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Fig. S8. NO3
− reduction reaction performance measurements of CoB@TiO2/TP: (a) 

LSV curves in 0.1 M Na2SO4 with and without 400 ppm NO3
−. (b) 

Chronoamperometry curves and (c) corresponding UV-vis spectra at a potential rang 

from −0.4 V to −0.9 V. (d) NH3 yields and FEs at given potentials.
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Fig. S9. UV-vis spectra of N2H4 detection.
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Fig. S10. Chromatograph curves of (a) H2 and (b) N2 detected by GC at each given 

potential.
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Fig. S11. NH3 yields and FEs during alternating cycle tests between NO2
−-

containing and NO2
−-free 0.1 M Na2SO4 at −0.7 V.
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Fig. S12. Chronoamperometry curve of CoB@TiO2/TP during 12-h stability test.
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Fig. S13. Time-dependent UV-vis spectra of NH4
+ during long-term stability test.
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Fig. S14. LSV curves of CoB@TiO2/TP before and after long-term stability test.
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Fig. S15. UV-vis spectra of CoB@TiO2/TP for cycling tests in 0.1 M Na2SO4 

containing 400 ppm NO2
− at −0.7 V.
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Fig. S16. SEM image of CoB@TiO2/TP after durability test.
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Fig. S17. XRD pattern of CoB@TiO2/TP after durability test.
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Table S1. Comparison of the catalytic performances of CoB@TiO2/TP with the other 

reported NO2
−RR and NO3

−RR electrocatalysts.

Catalyst Electrolyte NH3 yield FE (%) Ref.

0.1 M Na2SO4

(400 ppm NaNO2)

233.1 μmol h−1 

cm−2
95.2

CoB@TiO2/TP
0.1 M Na2SO4

(400 ppm NaNO3)

195.9 μmol h−1 

cm−2 84

This work

MnO2 nanoarray
0.1 M Na2SO4

(0.2 M NaNO2)

8.6 × 10−12 μmol 

h−1 cm−2
6 1

Ni-NSA-VNi

0.2 M Na2SO4

(200 ppm NaNO2)

235.5 μmol h−1 

cm−2
88.9 2

Cobalt-tripeptide 

complex

1.0 M MOPS

(1.0 M NaNO2)

1.1 μmol h−1 

cm−2
90 ± 3 3

Ni2P/NF
0.1 M PBS

(200 ppm NaNO2)

158.1 ± 5.4 

μmol h−1 cm−2 90.2 ± 3.0 4

CoP NA/TM
0.1 M PBS

(500 ppm NaNO2)

132.7 ± 3.0 

μmol h−1 cm−2 90.0 ± 2.3 5

Cu3P NA/CF
0.1 M PBS

(0.1 M NaNO2)

95.5 ± 2.1 μmol 

h−1 cm−2 91.2 ± 2.5 6

Cu80Ni20
1.0 M NaOH

(20 mM NaNO2)
/ 87.6 7

Cu phthalocyanine 

complexes

0.1 M KOH

(NaNO2)
/ 78 8

[Co(DIM)Br2]+ 0.1 M NaNO2 / 88 9

FeN5H2 1.0 M MOPS / 18 10

Co3O4@NiO
0.5 M Na2SO4

(2.36 mM NaNO3)
/ 55.0 11
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Co/CoO NSA
0.1 M Na2SO4

(200 ppm NaNO3)

194.5 μmol h−1 

cm−2 93.8 12

Co2AlO4
0.1 M PBS

(0.1 M NaNO3)

464.7 μmol h−1 

cm−2 92.6 13

Pd nanodots on Zr-

MOF
0.1 M Na2SO4

(500 ppm NO3
–)

16.99 μmol h−1 

mgcat.
−1

58.1 14

RuxOy clusters on 

Ni-MOF
0.1 M Na2SO4

(100 ppm NO3
–)

16.1 μmol h−1 

mgcat.
−1

58.8 15

Fe single atom 

catalyst
0.10 M K2SO4

(0.50 M KNO3)

~1176 μmol h−1 

cm−2
~75 16

Ag@NiO/CC
0.1 M NaOH

(0.1 M NaNO3)

135.1 μmol h−1 

cm−2 75.8 17
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