Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information for

Ba₂HgTe₅: A Hg-based Telluride with Giant Birefringence Induced by Linear [HgTe₂] units

Mengran Sun,^{a,b,c} and Jiyong Yao^{a,b,*}

a Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology,

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing

100049, P. R. China.

c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

*Corresponding author:

Jiyong Yao; jyao@mail.ipc.ac.cn.

- 1. Figure S1. The element analysis of Ba₂HgTe₅.
- 2. Figure S2. Coordination modes of Ba atoms in Ba₂HgTe₅.
- 3. Figure S3. The PXRD of Ba₂HgTe₅ before and after DSC measurements.
- 4. Table S1. Atomic coordinates, equivalent isotropic displacement parameters, and Wyckoff sites for Ba₂HgTe₅.
- 5. Table S2. Selected bond Lengths and angles for Ba₂HgTe₅.
- 6. Table S3. Comparison of the birefringence of the title compound and some known Hg-based chalcogenides.

1. Figure S1

(a) Scanning electron microscopy (SEM) image of Ba₂HgTe₅; (b) Elemental analysis of Ba₂HgTe₅ by EDX spectroscopy. (c) Elemental distribution of the as-grown crystal.

2. Figure S2

(a) Coordination mode of Ba atom and (b) $[BaTe_9]$ polyhedra in the unit cell of Ba_2HgTe_5 .

3. Figure S3

The PXRD of Ba_2HgTe_5 before and after DSC measurements.

Atom	Wyckoff site	X	У	Z	U_{eq}
Ba1	8d	31340(8)	49284(13)	14401(13)	367(4)
Hg1	4c	48939(10)	7500	49840(17)	544(4)
Te1	4c	51624(14)	2500	403(2)	388(5)
Te2	8d	56700(9)	48275(14)	21475(15)	393(4)
Te3	4c	30412(14)	7500	4133(2)	380(5)
Te4	4c	67949(14)	7500	5545(2)	388(5)

4. Table S1 Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³),

5. Table S2 Selected bond lengths (Å) and angles (°) for Ba₂HgTe₅.

and wyckoff sites for Ba₂HgTe₅.

Lengths((Å)			
Hg1–Te	2.642(2)	Te1-Te2	2.8053(18)	
Hg1–Te	2.644(2)	Te1-Te2 ⁵	2.8053(18)	
Angles(°)			
Te3-Hg1-	Te4 174.20(9)	Te2-Te1-Te2 ⁵	105.00(8)	
Symmetry trans	formations used to generat	e equivalent atoms:		
1 -x+1/2,-y+1,z-1/2 2 x-1/2,y,-z+1/2		³ -x+1,-y+1,-z+1	⁴ -x+1,-y+1,-z	
⁵ x,-y+1/2,z	⁶ -x+1/2,-y+1,z+1/2	⁷ -x+1,y-1/2,-z	⁸ x+1/2,y,-z+1/2	
9 x,-y+3/2,z 10 -x+1/2,y+1/2,z+1/2		¹¹ x+1/2,-y+3/2,-z+1/2	¹² -x+1,y+1/2,-z+1	

Compound	S.G.	Hg polyhedra	Δn	SHG intensity	Refs.
Ba ₂ HgTe ₅	Pnma	HgTe ₂	0.643	/	This work
BaHgGeSe ₄	Ama2	HgSe ₄	0.27	$4.7 \times AGS$	1
EuHgGeS ₄	Ama2	HgS_4	0.25	$0.9 \times AGS$	2
BaHgSe ₂	$Pmc2_1$	HgSe ₃ , HgSe ₂	0.1473	$1.5 \times AGS$	3
CuHgPS ₄	$Pna2_1$	HgS_4	0.11	$6.5 \times AGS$	4
AgHgPS ₄	Pn	HgS_4	0.11	$5.09 \times AGS$	5
Hg ₂ GeSe ₄	I- 4	HgSe ₄	0.11	$2.1 \times AGS$	6
BaHgSnS ₄	Ama2	HgS_4	0.1	$2.8 \times AGS$	7
BaHgSnSe ₄	Fdd2	HgSe ₄	0.1	$5.1 \times AGS$	7
$HgGa_2S_4$	I- 4	HgS_4	0.078	$2-3 \times AGS$	8
KHg ₄ Ga ₅ Se ₁₂	R3	HgSe ₄	0.072	$20 \times AGS$	9
BaHgS ₂	$Pmc2_1$	HgS ₄ , HgS ₂	0.07	$6.5 \times AGS$	10
$Hg_3P_2S_8$	Aba2	HgS_4	0.05	$4.2 \times AGS$	11-12

6. Table S3 Comparison of the birefringence of the title compound and some known Hg-based chalcogenides.

References

- Guo, Y.; Liang, F.; Yin, W.; Li, Z.; Luo, X.; Lin, Z.; Yao, J.; Mar, A.; Wu, Y., BaHgGeSe₄ and SrHgGeSe₄: Two New Hg-Based Infrared Nonlinear Optical Materials. *Chem. Mater.* 2019, *31* (8), 3034-3040.
- 2. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77* (18), 3865-3868.
- Li, C.; Yin, W.; Gong, P.; Li, X.; Zhou, M.; Mar, A.; Lin, Z.; Yao, J.; Wu, Y.; Chen, C., Trigonal Planar [HgSe₃]^{4–} Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability. *J. Am. Chem. Soc.* 2016, *138* (19), 6135-6138.
- Yan, M.; Sun, Z. D.; Yao, W. D.; Zhou, W.; Liu, W.; Guo, S., A Highly Distorted HgS₄ Tetrahedron-Induced Moderate Second-Harmonic Generation Response of EuHgGeS₄. *Inorg. Chem. Front.* 2020, 7 (13), 2451-2458.
- Li, M.; Ma, Z.; Li, B.; Wu, X.; Lin, H.; Zhu, Q., HgCuPS₄: An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-Like Structure. *Chem. Mater.* 2020, *32* (10), 4331-4339.
- Xing, W.; Wang, N.; Tang, C.; Li, C.; Lin, Z.; Yao, J.; Yin, W.; Kang, B., From AgGaS₂ to AgHgPS₄: Vacancy Defects and Highly Distorted HgS₄ Tetrahedra Double-Induced Remarkable Second-Harmonic Generation Response. J. Mater. Chem. C 2021, 9 (3), 1062-1068.
- Guo, Y.; Liang, F.; Yao, J.; Lin, Z.; Yin, W.; Wu, Y.; Chen, C., Nonbonding Electrons Driven Strong SHG Effect in Hg₂GeSe₄: Experimental and Theoretical Investigations. *Inorg. Chem.* 2018, 57 (12), 6795-6798.
- Umemura, N.; Mikami, T.; Kato, K., Phase-Matching Properties of HgGa₂S₄ for SHG in the 0.958–9.2714 μm Range. *Opt. Commun.* 2012, 285 (6), 1394-1396.
- Guo, Y.; Liang, F.; Li, Z.; Xing, W.; Lin, Z.; Yao, J.; Mar, A.; Wu, Y., AHgSnQ₄ (A = Sr, Ba; Q = S, Se): A Series of Hg-Based Infrared Nonlinear-Optical Materials with Strong Second-Harmonic-Generation Response and Good Phase Matchability. *Inorg. Chem.* 2019, *58* (15), 10390-10398.
- Wu, K.; Su, X.; Pan, S.; Yang, Z., Synthesis and Characterization of Mid-Infrared Transparency Compounds: Acentric BaHgS₂ and Centric Ba₈Hg₄S₅Se₇. *Inorg. Chem.* 2015, *54* (6), 2772-2779.
- Chu, Y.; Wang, P.; Zeng, H.; Cheng, S.; Su, X.; Yang, Z.; Li, J.; Pan, S., Hg₃P₂S₈: A New Promising Infrared Nonlinear Optical Material with a Large Second-Harmonic-Generation and a High Laser-Induced Damage Threshold. *Chem. Mater.* 2021, *33* (16), 6514-6521.
- Xing, W.; Liang, F.; Tang, C.; Uykur, E.; Lin, Z.; Yao, J.; Yin, W.; Kang, B., Highly Distorted [HgS₄] Motif-Driven Structural Symmetry Degradation and Strengthened Second-Harmonic-Generation Response in the Defect Diamond-Like Chalcogenide Hg₃P₂S₈. ACS Appl. Mater. Inter. 2021, 13 (31), 37331-37338.