Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Contrasting roles of Bi- doping and Bi₂Te₃ alloying on the

thermoelectric performance of SnTe

Fudong Zhang^{a,#}, Xia Qi^{a,#}, Mingkai He^b, Fengshan Zheng^c, Lei Jin^{c,*}, Zhanhui Peng^a,

Xiaolian Chao^a, Zupei Yang^{a,*}, Di, Wu^{a,*}

- ^a Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
- ^b Department of Physics, The Chinese University of Hong Kong, Hong Kong 999077, China
- ^cErnst Ruska-Centre for Microscopy and Spectroscopy with Electrons Forschungszentrum Jülich GmbH

52428 Jülich, Germany.

[#] These authors contributed equally to this work.

*Correspondence shall be addressed to:

E-mails: l.jin@fz-juelich.de, yangzp@snnu.edu.cn, wud@snnu.edu.cn.

Figure S1 (a) The powder XRD patterns for $Sn_{1-y}Bi_yTe_{1+0.5y}$ (y = 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12, 0.15). (b) Calculated lattice parameters obtained from (a).

Figure S2 (a) and (b) Room-temperature carrier concentration ($n_{\rm H}$) and carrier mobility ($\mu_{\rm H}$) of Sn_{1-x}Bi_xTe and Sn₁. _yBi_yTe_{1+0.5y}, respectively.

Figure S3 Temperature dependent (a) power factor, (b) calculated electronic thermal conductivity, (c) calculated weighted carrier mobility, and (d) ZT of Sn_{1-x}Bi_xTe (x = 0, 0.01, 0.03 and 0.05) and Sn_{1-y}Bi_yTe_{1+0.5y} (y = 0, 0.01, 0.03 and 0.05).

Figure S4 Low magnification TEM image of $Sn_{0.97}Bi_{0.03}Te_{1.015}$ sample showing (a) mesoscale grains and (b) dislocation arrays at grain boundaries.

Figure S5 (a) The powder X-ray diffraction (XRD) patterns and (b) calculated lattice parameters of $(Sn_{1-z}Ge_zTe)_{0.97}$ -(BiTe_{1.5})_{0.03} (z = 0, 0.04, 0.08, 0.12 and 0.15).

Figure S6 Room-temperature carrier concentration ($n_{\rm H}$) and carrier mobility ($\mu_{\rm H}$) of (Sn_{1-z}Ge_zTe)_{0.97}-(BiTe_{1.5})_{0.03} (z = 0.04, 0.08, 0.12 and 0.15).