Supporting Information for

# Highly symmetric Ln(III) boron-containing macrocycles as bright

# fluorophores for living cell imaging

Zhenhua Zhu,<sup>1,2,‡</sup> Guo-Qing Jin,<sup>3,‡</sup> Jinjiang Wu,<sup>1,4</sup> Xu Ying,<sup>1,4</sup> Chen Zhao,<sup>1,4</sup> Jun-Long Zhang<sup>3,\*</sup> and Jinkui Tang<sup>1,4,\*</sup>

<sup>1</sup>State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China;
<sup>2</sup>University of Chinese Academy of Sciences, Beijing 100049, P.R. China;
<sup>3</sup>Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China;
<sup>4</sup>University of Science and Technology of China, Hefei 230026.
\*Corresponding authors. Email: tang@ciac.ac.cn and <u>zhangjunlong@pku.edu.cn</u>
<sup>‡</sup>Equally contributed to this work.

## Contents

| 1. General information                                                | S2      |
|-----------------------------------------------------------------------|---------|
| 2. Synthesis of Ln-B-Ph <sub>3</sub> PO and Ln-B-AnPh <sub>3</sub> PO | S3      |
| 3. Single-crystal X-ray crystallography                               | S4-S10  |
| 4. TGA and magnetic measurements                                      | S11-S12 |
| 5. Photophysical properties                                           | S13-S19 |
| 6. Living cell imaging                                                | S20     |
| 7. References                                                         | S21     |

#### 1. General information

Toluene used for synthesis was freshly distilled prior to use and stored over activated 4 Å molecular sieves in the Ar filled glovebox. Ph<sub>3</sub>PO and Catecholborane (HBCat) were purchased from J&K Chemical Co. and used as received. Anhydrous LnCl<sub>3</sub>, Ln[N(TMS)<sub>2</sub>]<sub>3</sub> and AnPh<sub>3</sub>PO were prepared according to literature procedures.<sup>1-3</sup> Xray diffraction data of Ln-B-Ph<sub>3</sub>PO and Dy-B-Cy<sub>3</sub>PO were collected on a Bruker Apex II CCD diffractometer equipped with an Oxford low temperature apparatus using MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å). The structure was solved in Olex2 with SHELXT using intrinsic phasing and were refined with SHELXL using least squares minimization.<sup>4</sup> The crystal data have been deposited at the Cambridge Structural Database (CCDC-1990956, 2165282, 2165283, 2165423), which can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif. PXRD data were collected on a Bruker D8 advance X-ray diffractometer using Cu K $\alpha$  radiation ( $\lambda = 1.54184$  Å). TGA were performed on a Netzsch STA 449F3 analyzer. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 2400 analyzer. The magnetic properties were explored using a Quantum Design MPMS XL-7 SQUID magnetometer. Variable-temperature dc magnetic susceptibility was performed in the temperature range 1.9-300 K under a 1000 Oe dc field while ac magnetic susceptibility was collected under a zero dc field with an oscillating field of 3 Oe. The polycrystalline or powder samples were sealed in a polyethylene membrane in a glass tube with an inert atmosphere before test. The experimental magnetic data are corrected for the diamagnetism estimated from Pascal's constants and sample holder calibration.<sup>5</sup> Solid-state and solution UV-vis spectra were recorded in different modes on a Hitachi U-4100 UV-vis-NIR spectrophotometer. The photoluminescence excitation and photoluminescence emission spectra were collected using an Edinburgh Instruments FLSP-920 fluorescence spectrometer equipped with a 450 W xenon lamp as the excitation source at room temperature. The luminescence decay lifetimes were analyzed with a Lecroy Wave Runner 6100 digital oscilloscope (1 GHz) using a tunable laser (pulse width 4 ns, gate 50 ns) as the excitation (Continuum Sunlite OPO). The overall luminescence quantum yields were determined by an integrating sphere on a FLS1000 instrument.

## 2. Synthesis of Ln-B-Ph<sub>3</sub>PO and Ln-B-AnPh<sub>3</sub>PO Synthesis of Dy-B-Ph<sub>3</sub>PO:

Dy[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> (0.3 mmol, 0.195 g), HBCat (2.7 mmol, 0.324 g), Ph<sub>3</sub>PO (0.6 mmol, 0.167 g) and 10 mL toluene were added to a dried Schlenk tube equipped with a stirrer bar in the glovebox. The tube was sealed and the mixture was stirred at 90 °C for 24 h. Then, it was filtered and allowed to stand undisturbed at room temperature for several days to yield colorless bulk crystals in the shape of regular hexagon (yield: 61% based on Dy). Elemental analysis / %, found (calculated) for **Dy-B-Ph<sub>3</sub>PO**: C 61.55 (61.77); H 3.81 (3.89).

## Synthesis of **Dy-B-Cy<sub>3</sub>PO**:

The synthesis procedures were similar to that of **Dy-B-Ph<sub>3</sub>PO**, except using Cy<sub>3</sub>PO as starting materials (yield: 43% based on Dy). Elemental analysis / %, found (calculated) for **Dy-B-Cy<sub>3</sub>PO**: C 60.26 (60.43); H 6.29 (6.34).

### Synthesis of Yb-B-Ph<sub>3</sub>PO and Gd-B-Ph<sub>3</sub>PO:

The synthesis procedures of these two complexes were similar to that of **Dy-B-Ph<sub>3</sub>PO**, except using Yb[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> and Gd[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> as starting materials (yield: 73% for **Yb-B-Ph<sub>3</sub>PO** and 56% for **Gd-B-Ph<sub>3</sub>PO** based on Ln). Elemental analysis / %, found (calculated) for **Yb-B-Ph<sub>3</sub>PO**: C 61.07 (61.30); H 3.73 (3.86); **Gd-B-Ph<sub>3</sub>PO**: C 61.26 (62.00); H 3.93 (3.90).

#### Synthesis of Yb-B-AnPh<sub>3</sub>PO and Gd-B-AnPh<sub>3</sub>PO:

The synthesis procedures of these two complexes were similar to that of **Dy-B-Ph<sub>3</sub>PO**, except using Yb[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> and Gd[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> as well as AnPh<sub>3</sub>PO as starting materials (yield: 49% for **Yb-B-AnPh<sub>3</sub>PO** and 57% for **Gd-B-AnPh<sub>3</sub>PO** based on Ln). Elemental analysis / %, found (calculated) for **Yb-B-AnPh<sub>3</sub>PO**: C 67.96 (68.13); H 3.93 (4.00); **Gd-B-AnPh<sub>3</sub>PO**: C 68.67 (68.74); H 4.08 (4.04).

# 3. Single-crystal X-ray crystallography



Figs. S1 Molecular structures and equatorial plane for Yb-B-Ph<sub>3</sub>PO, Gd-B-Ph<sub>3</sub>PO and Dy-B-Cy<sub>3</sub>PO from left to right.

| Compound reference                   | Dy-B-Ph <sub>3</sub> PO      | Ga-B-Ph <sub>3</sub> PO                   |
|--------------------------------------|------------------------------|-------------------------------------------|
| Chemical formula                     | $C_{72}H_{54}B_3DyO_{14}P_2$ | $C_{72}H_{54}B_3GdO_{14}P_2 \cdot C_7H_8$ |
| Formula Mass                         | 1400.03                      | 1486.90                                   |
| Temperature (K)                      | 180.0                        | 180.0                                     |
| Crystal system                       | trigonal                     | triclinic                                 |
| Space group                          | <i>R</i> -3                  | <i>P</i> -1                               |
| <i>a</i> (Å)                         | 18.3591(6)                   | 14.2030(5)                                |
| <i>b</i> (Å)                         | 18.3591(6)                   | 16.7770(6)                                |
| <i>c</i> (Å)                         | 33.5988(13)                  | 18.4196(7)                                |
| α (°)                                | 90.000                       | 79.004(2)                                 |
| $\beta$ (°)                          | 90.000                       | 69.4470(10)                               |
| γ (°)                                | 120.000                      | 71.9180(10)                               |
| Unit cell volume (Å <sup>3</sup> )   | 9807.5(7)                    | 3890.2(2)                                 |
| Ζ                                    | 6                            | 2                                         |
| $ ho_{ m calc}$ (g/cm <sup>3</sup> ) | 1.422                        | 1.269                                     |
| $\mu$ / mm <sup>-1</sup>             | 1.258                        | 0.953                                     |
| F (000)                              | 4254                         | 1514.0                                    |
| Radiation                            | MoKa ( $\lambda = 0.71073$ ) | MoKa ( $\lambda = 0.71073$ )              |
| Reflections collected                | 22875                        | 70478                                     |
| Independent reflections              | 3356                         | 14212                                     |
| R <sub>int</sub>                     | 0.0380                       | 0.0486                                    |
| GOF on $F^2$                         | 1.043                        | 1.080                                     |
| $R_1(I \ge 2\sigma(I))$              | 0.0223                       | 0.0250                                    |
| $wR_2$ (all data)                    | 0.0557                       | 0.0640                                    |
| CCDC number                          | 1990956                      | 2165282                                   |
|                                      |                              |                                           |

Table S1. Crystal Data and Structure Refinement for Dy-B-Ph<sub>3</sub>PO and Gd-B-Ph<sub>3</sub>PO.Compound referenceDy-B-Ph<sub>3</sub>POGd-B-Ph<sub>3</sub>PO

| Compound reference                   | Yb-B-Ph <sub>3</sub> PO                    | Dy-B-Cy <sub>3</sub> PO              |
|--------------------------------------|--------------------------------------------|--------------------------------------|
| Chemical formula                     | $C_{72}H_{54}B_3YbO_{14}P_2 \cdot 2C_7H_8$ | $C_{72}H_{90}B_3DyO_{14}P_2$         |
| Formula Mass                         | 1594.83                                    | 1436.30                              |
| Temperature (K)                      | 180.0                                      | 180.0                                |
| Crystal system                       | triclinic                                  | orthorhombic                         |
| Space group                          | <i>P</i> -1                                | Pbca                                 |
| <i>a</i> (Å)                         | 14.0429(8)                                 | 22.5723(13)                          |
| <i>b</i> (Å)                         | 16.7888(9)                                 | 24.4828(17)                          |
| <i>c</i> (Å)                         | 18.4141(11)                                | 24.8294(17)                          |
| $\alpha$ (°)                         | 79.051(2)                                  | 90                                   |
| $\beta$ (°)                          | 69.845(2)                                  | 90                                   |
| γ (°)                                | 71.848(2)                                  | 90                                   |
| Unit cell volume (Å <sup>3</sup> )   | 3856.1(4)                                  | 13721.5(16)                          |
| Ζ                                    | 2                                          | 8                                    |
| $ ho_{ m calc}$ (g/cm <sup>3</sup> ) | 1.374                                      | 1.391                                |
| $\mu$ / mm <sup>-1</sup>             | 1.319                                      | 1.200                                |
| F (000)                              | 1626                                       | 5960                                 |
| Radiation                            | MoKa ( $\lambda = 0.71073$ )               | MoK $\alpha$ ( $\lambda = 0.71073$ ) |
| Reflections collected                | 68156                                      | 197972                               |
| Independent reflections              | 13507                                      | 12655                                |
| R <sub>int</sub>                     | 0.0304                                     | 0.1533                               |
| GOF on $F^2$                         | 1.085                                      | 1.138                                |
| $R_1(I \ge 2\sigma(I))$              | 0.0261                                     | 0.0790                               |
| $wR_2$ (all data)                    | 0.0656                                     | 0.2417                               |
| CCDC number                          | 2165283                                    | 2165423                              |
|                                      |                                            |                                      |

Table S2. Crystal Data and Structure Refinement for Yb-B-Ph<sub>3</sub>PO and Dy-B-Cy<sub>3</sub>PO.Compound referenceYb-B-Ph<sub>3</sub>PODy-B-Cy<sub>3</sub>PO

| Central atom | Coordination Geometry                  | Dy-B-Ph <sub>3</sub> PO | Yb-B-Ph <sub>3</sub> PO |
|--------------|----------------------------------------|-------------------------|-------------------------|
|              | Octagon $(D_{8h})$                     | 32.04                   | 31.359                  |
|              | Heptagonal pyramid (C7v)               | 22.60                   | 22.009                  |
|              | Hexagonal bipyramid (D <sub>6h</sub> ) | 0.207                   | 0.577                   |
| Ln           | Cube (O <sub>h</sub> )                 | 8.57                    | 7.381                   |
|              | Square antiprism (D <sub>4d</sub> )    | 18.60                   | 15.676                  |
|              | Triangular dodecahedron                | 15.82                   | 12.912                  |
|              | $(D_{2d})$                             |                         |                         |
|              |                                        |                         |                         |
| Central atom | Coordination Geometry                  | Gd-B-Ph <sub>3</sub> PO | Dy-B-Cy <sub>3</sub> PO |
|              | Octagon $(D_{8h})$                     | 31.307                  | 31.264                  |
|              | Heptagonal pyramid (C7v)               | 22.060                  | 21.681                  |
| Ln           | Hexagonal bipyramid (D <sub>6h</sub> ) | 0.488                   | 0.255                   |
|              | Cube (O <sub>h</sub> )                 | 7.501                   | 8.192                   |
|              | Square antiprism (D <sub>4d</sub> )    | 16.054                  | 17.815                  |
|              | Triangular dodecahedron                | 13.285                  | 15.070                  |
|              | $(D_{2d})$                             |                         |                         |

 Table S3. The CShM's values of the first coordination sphere for Ln-B-Ph<sub>3</sub>PO and Dy-B-Cy<sub>3</sub>PO.

| Dy-B-Ph <sub>3</sub> PO        | Yb-B-Ph <sub>3</sub> PO |
|--------------------------------|-------------------------|
| Dy1-O1 2.215(3)                | Yb1-O1 2.3181(17)       |
| Dy1-O2 2.205(3)                | Yb1-O2 2.3331(17)       |
| Dy1-O3 2.3547(16)              | Yb1-O3 2.3446(17)       |
| Dy1-O3 <sup>2</sup> 2.3547(16) | Yb1-O4 2.1815(18)       |
| Dy1-O3 <sup>3</sup> 2.3546(16) | Yb1-O5 2.3389(17)       |
| Dy1-O4 <sup>1</sup> 2.3570(16) | Yb1-O6 2.3579(17)       |
| Dy1-O4 <sup>2</sup> 2.3570(16) | Yb1-O7 2.3127(18)       |
| Dy1-O4 <sup>3</sup> 2.3570(16) | Yb1-O8 2.1683(18)       |
|                                |                         |
| Gd-B-Ph <sub>3</sub> PO        | Dy-B-Cy <sub>3</sub> PO |
| Gd1-O8 2.3859(14)              | Dy1-O1 2.215(6)         |
| Gd1-O7 2.3932(14)              | Dy1-O2 2.218(6)         |
| Gd1-O5 2.3602(14)              | Dy1-O3 2.361(6)         |
| Gd1-O4 2.3709(15)              | Dy1-O4 2.360(6)         |
| Gd1-O6 2.3819(15)              | Dy1-O5 2.360(6)         |
| Gd1-O1 2.2682(15)              | Dv1-O6 2.356(6)         |
|                                | 2 ] 1 0 0 2.000 0(0)    |
| Gd1-O2 2.2439(15)              | Dy1-O7 2.366(6)         |

Table S4. Selected bond distances (Å) for complexes Ln-B-Ph<sub>3</sub>PO and Dy-B-Cy<sub>3</sub>PO.

| Dy-B-Ph <sub>3</sub> PO                       | Yb-B-Ph <sub>3</sub> PO |
|-----------------------------------------------|-------------------------|
| O1 Dy1 O3 90.76(4)                            | O1 Yb1 O2 64.85(6)      |
| O1 Dy1 O3 <sup>2</sup> 90.76(4)               | O1 Yb1 O3 172.72(6)     |
| O1 Dy1 O3 <sup>3</sup> 90.76(4)               | O1 Yb1 O5 55.73(6)      |
| O1 Dy1 O4 <sup>1</sup> 90.50(4)               | O1 Yb1 O6 120.75(6)     |
| O1 Dy1 O4 <sup>2</sup> 90.50(4)               | O2 Yb1 O3 119.81(6)     |
| O1 Dy1 O4 <sup>3</sup> 90.50(4)               | O2 Yb1 O5 119.91(6)     |
| O2 Dy1 O1 180.0                               | O2 Yb1 O6 171.95(6)     |
| O2 Dy1 O3 <sup>1</sup> 89.24(4)               | O3 Yb1 O6 55.32(6)      |
| O2 Dy1 O3 <sup>2</sup> 89.24(4)               | O4 Yb1 O1 86.99(7)      |
| O2 Dy1 O3 <sup>3</sup> 89.24(4)               | O4 Yb1 O2 98.15(7)      |
| O2 Dy1 O4 <sup>1</sup> 89.50(4)               | O4 Yb1 O3 86.74(7)      |
| O2 Dy1 O4 <sup>2</sup> 89.50(4)               | O4 Yb1 O5 87.43(7)      |
| O2 Dy1 O4 <sup>3</sup> 89.50(4)               | O4 Yb1 O6 88.20(7)      |
| O3 <sup>1</sup> Dy1 O3 <sup>2</sup> 120       | O4 Yb1 O7 85.18(7)      |
| O3 <sup>2</sup> Dy1 O3 <sup>3</sup> 120       | O5 Yb1 O3 120.23(6)     |
| O3 <sup>1</sup> Dy1 O3 <sup>3</sup> 120       | O5 Yb1 O6 65.07(6)      |
| O3 <sup>1</sup> Dy1 O4 <sup>1</sup> 55.30(5)  | O7 Yb1 O1 118.19(6)     |
| O3 <sup>2</sup> Dy1 O4 <sup>2</sup> 55.30(5)  | O7 Yb1 O2 55.95(6)      |
| O3 <sup>1</sup> Dy1 O4 <sup>2</sup> 175.14(5) | O7 Yb1 O3 64.92(6)      |
| O3 <sup>2</sup> Dy1 O4 <sup>3</sup> 175.14(5) | O7 Yb1 O5 170.75(6)     |
| O3 <sup>3</sup> Dy1 O4 <sup>3</sup> 55.30(5)  | O7 Yb1 O6 120.14(6)     |
| O3 <sup>3</sup> Dy1 O4 <sup>1</sup> 175.14(5) | O8 Yb1 O1 94.69(7)      |
| O3 <sup>1</sup> Dy1 O4 <sup>3</sup> 64.69(5)  | O8 Yb1 O2 83.92(7)      |
| O3 <sup>2</sup> Dy1 O4 <sup>1</sup> 64.69(5)  | O8 Yb1 O3 91.48(7)      |
| O3 <sup>3</sup> Dy1 O4 <sup>2</sup> 64.69(5)  | O8 Yb1 O4 177.76(7)     |
| O4 <sup>1</sup> Dy1 O4 <sup>2</sup> 120       | O8 Yb1 O5 92.29(7)      |
| O4 <sup>1</sup> Dy1 O4 <sup>3</sup> 120       | O8 Yb1 O6 89.67(7)      |
| O4 <sup>2</sup> Dy1 O4 <sup>3</sup> 120       | O8 Yb1 O7 95.31(7)      |

Table <u>S5</u>. Selected bond angles (°) for complexes **Dy-B-Ph<sub>3</sub>PO** and **Yb-B-Ph<sub>3</sub>PO**.

| Gd-B-Ph <sub>3</sub> PO | Dy-B-Cy <sub>3</sub> PO |
|-------------------------|-------------------------|
| O8 Gd1 O7 55.06(5)      | O3 Dy1 O8 64.3(2)       |
| O5 Gd1 O8 172.11(5)     | O3 Dy1 O7 119.7(2)      |
| O5 Gd1 O7 120.64(5)     | O6 Dy1 O3 175.5(2)      |
| O5 Gd1 O4 64.85(5)      | O6 Dy1 O5 55.2(2)       |
| O5 Gd1 O6 55.33(5)      | O6 Dy1 O8 120.3(2)      |
| O4 Gd1 O8 119.88(5)     | O6 Dy1 O4 119.9(2)      |
| O4 Gd1 O7 173.80(5)     | O6 Dy1 O7 64.8(2)       |
| O4 Gd1 O6 119.88(5)     | O5 Dy1 O3 120.3(2)      |
| O6 Gd1 O8 120.24(5)     | O5 Dy1 O8 175.3(2)      |
| O6 Gd1 O7 65.37(5)      | O5 Dy1 O4 64.8(2)       |
| O1 Gd1 O8 85.88(5)      | O5 Dy1 O7 119.9(2)      |
| O1 Gd1 O7 86.87(5)      | O2 Dy1 O3 91.8(2)       |
| O1 Gd1 O5 87.28(6)      | O2 Dy1 O6 88.0(2)       |
| O1 Gd1 O4 96.55(5)      | O2 Dy1 O5 86.2(2)       |
| O1 Gd1 O6 86.65(6)      | O2 Dy1 O8 92.5(2)       |
| O1 Gd1 O3 84.67(6)      | O2 Dy1 O4 90.2(2)       |
| O2 Gd1 O8 91.70(6)      | O2 Dy1 O7 88.7(2)       |
| O2 Gd1 O7 91.27(6)      | O8 Dy1 O7 55.5(2)       |
| O2 Gd1 O5 95.09(6)      | O4 Dy1 O3 55.5(2)       |
| O2 Gd1 O4 85.15(6)      | O4 Dy1 O8 119.8(2)      |
| O2 Gd1 O6 94.08(6)      | O4 Dy1 O7 175.1(2)      |
| O2 Gd1 O1 177.51(6)     | O1 Dy1 O3 93.2(2)       |
| O2 Gd1 O3 94.85(6)      | O1 Dy1 O6 87.0(2)       |
| O3 Gd1 O8 65.09(5)      | O1 Dy1 O5 91.3(2)       |
| O3 Gd1 O7 119.97(5)     | O1 Dy1 O2 175.0(2)      |
| O3 Gd1 O5 118.14(5)     | O1 Dy1 O8 89.8(2)       |
| O3 Gd1 O4 55.49(5)      | O1 Dy1 O4 92.6(2)       |
| O3 Gd1 O6 169.46(5)     | O1 Dy1 O7 88.9(3)       |

Table <u>S6</u>. Selected bond angles (°) for complexes Gd-B-Ph<sub>3</sub>PO and Dy-B-Cy<sub>3</sub>PO.

# 4. TGA and magnetic measurements



Fig. S2. Thermogravimetric analysis of Dy-B-Ph<sub>3</sub>PO.



Fig. S3. Thermogravimetric analysis of Dy-B-Cy<sub>3</sub>PO.



Fig. S4. Thermogravimetric analysis of Yb-B-AnPh<sub>3</sub>PO.



Fig. S5. Temperature dependence of ac susceptibility for Dy-B-Ph<sub>3</sub>PO in zero dc field at the frequency of 997 Hz.

#### 5. Photophysical Properties



**Fig. S6**. Phosphorescence spectrum of **Gd-B-Ph<sub>3</sub>PO** collected in the solid state under excitation at 290 nm (black line, 77 K) and its Gaussian decomposition (colored traces).



Fig. S7. Decay curves of **Dy-B-Ph<sub>3</sub>PO** in CDCl<sub>3</sub> solution ( $c = 1.5 \times 10^{-5} \text{ mol/L}$ ) at room temperature.



Fig. S8. Decay curves of Yb-B-Ph<sub>3</sub>PO in CDCl<sub>3</sub> solution ( $c = 1.5 \times 10^{-5} \text{ mol/L}$ ) at room temperature.



Fig. S9. Decay curves of Yb-B-AnPh<sub>3</sub>PO in the solid state at room temperature.



**Fig. S10**. Decay curves of **Yb-B-AnPh<sub>3</sub>PO** in CHCl<sub>3</sub> solution ( $c = 1.5 \times 10^{-5} \text{ mol/L}$ ) at room temperature.



Fig. S11. Decay curves of Yb-B-AnPh<sub>3</sub>PO in CDCl<sub>3</sub> solution ( $c = 1.5 \times 10^{-5} \text{ mol/L}$ ) at room temperature.



Fig. S12. Absorption spectra of Ph<sub>3</sub>PO and Dy-B-Ph<sub>3</sub>PO in THF ( $c = 1.5 \times 10^{-5}$  mol/L) at room temperature.



**Fig. S13**. Excitation spectra of **Dy-B-Ph<sub>3</sub>PO** (top) and **Yb-B-Ph<sub>3</sub>PO** (bottom) in solid state and CHCl<sub>3</sub> solution under monitoring the main f-f transitions of  $Dy^{3+}$  ion at 580 nm and Yb<sup>3+</sup> ion at 980 nm at room temperature.



**Fig. S14**. Normalized emission spectra of Ph<sub>3</sub>PO and **Dy-B-Ph<sub>3</sub>PO** in the solid state under the excitation at 240 nm and 300 nm, respectively, at room temperature.

| Complex                                                                                                                                                     | $	au_{ m obs}$ | $arPsi_{ m overall}$ | state              | ref. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|--------------------|------|
|                                                                                                                                                             | (µs)           | (%)                  |                    |      |
| Dy(PPI) <sub>3</sub> (DPEPO)                                                                                                                                | 33             | 12                   | solid              | [6]  |
| [DyR(+)BnMe22IAM]                                                                                                                                           | 18             | 1.3                  | CH <sub>3</sub> OH | [7]  |
| [DyGa <sub>4</sub> (shi) <sub>4</sub> (C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> ) <sub>4</sub> (C <sub>5</sub> H <sub>5</sub> N) (CH <sub>3</sub> OH)] | 21             | 1.2                  | solid              | [8]  |
| $[(AsW_9O_{33})_7Dy_7W_8O_{21}(H_2O)_{17}(\mu_3-$                                                                                                           | 41.5           | -                    | solid              | [9]  |
| OH)(OH)]                                                                                                                                                    |                |                      |                    |      |
| $\{[Dy_2(bpda)_3(H_2O)_3]_4 \cdot {}_2H_2O\}$                                                                                                               | 8              | 1.24                 | solid              | [10] |
| $[LnGa_4(shi)_4(H_2shi)_2(py)_4(NO_3)](py)_2$                                                                                                               | 3.36           | 0.22                 | solid              | [11] |
| ${[Ln(H_2BIDC)(HBIDC)(H_2O)_3] \cdot 3H_2O}n$                                                                                                               | 7.63           | -                    | solid              | [12] |

**Table S7**. Photophysical data for Dy(III) complexes at room temperature reported in literature.



Fig. S15. Absorption spectra of Ph<sub>3</sub>PO and Yb-B-Ph<sub>3</sub>PO in CHCl<sub>3</sub> ( $c = 1.5 \times 10^{-5}$  mol/L mol/L) at room temperature.



Fig. S16. Phosphorescence spectrum of Gd-B-AnPh<sub>3</sub>PO collected in the solid state under excitation at 360 nm at 77 K.

#### 6. Living Cell Imaging

Cytotoxicity evaluation in vitro. CCK-8 assay was carried out to evaluate the dark toxicity and phototoxicity of **Yb-B-AnPh<sub>3</sub>PO**. HeLa cells were seeded into 96-well plates at the density of  $1 \times 104$  per well and incubated at 37 °C for 24 h. After removal of the medium and rinsing with PBS, HeLa were pretreated with compound **Yb-B-AnPh<sub>3</sub>PO** (final concentration contains 0, 5,10, 15, 20 or 25 µM), respectively. One plate was kept in the dark for studying dark toxicity, and another plate was irradiated using the 400-700 nm laser at a power of 10 mW cm<sup>-2</sup> for 10 min. All group cells were incubated for another 24 h, the cell viability was detected by added of Cell Counting Kit-8 (CCK-8, 10 µL), and the absorbance at a wavelength of 450 nm of each well was measured using a 96-well plate reader. The cell viability was then determined via the following equation: cell viability (%) = (mean of abs. value of treatment group/mean abs. value of control) × 100%.

Fluorescence imaging of Yb-B-AnPh<sub>3</sub>PO in live HeLa cell. Yb-B-AnPh<sub>3</sub>PO was diluted with DMEM to work concentration (10  $\mu$ M). Yb-B-AnPh<sub>3</sub>PO solution was added to the Hela cells and incubating at 37 °C for 3 h, then washed twice with PBS buffer (1×, pH = 7.4), and kept in fresh FBS-free DMEM for observation under a microscope (Excitation:  $\lambda$  = 375 nm. Emission: 776 nm long pass filter + 980nm long pass filter).



Fig. S17. Plots of results of the cytotoxicity test for Yb-B-AnPh<sub>3</sub>PO incubated with HeLa cells during 24 h.

#### 7. References:

- W. Huang, B. M. Upton, S. I. Khan and P. L. Diaconescu, *Organometallics*, 2013, 32, 1379-1386.
- P. Zhang, L. Zhang, C. Wang, S. Xue, S.-Y. Lin and J. Tang, J. Am. Chem. Soc., 2014, 136, 4484-4487.
- 3. Y. Yu, L. Ma, Z. Feng, B. Liu, H. Zhou, H. Qin, H. Li, J. Song, G. Zhou and Z. Wu, *J. Mater. Chem. C*, 2019, 7, 5604-5614.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 5. E. A. Boudreaux and L. N. Mulay, John Wiley & Sons, New York, 1976.
- 6. S. Biju, N. Gopakumar, J. C. G. Bünzli, R. Scopelliti, H. K. Kim and M. L. P. Reddy, *Inorg. Chem.*, 2013, **52**, 8750-8758.
- 7. S. Petoud, G. Muller, E. G. Moore, J. Xu, J. Sokolnicki, J. P. Riehl, U. N. Le, S. M. Cohen and K. N. Raymond, *J. Am. Chem. Soc.*, 2007, **129**, 77-83.
- 8. C. Y. Chow, S. V. Eliseeva, E. R. Trivedi, T. N. Nguyen, J. W. Kampf, S. Petoud and V. L. Pecoraro, *J. Am. Chem. Soc.*, 2016, **138**, 5100-5109.
- J. Xiong, Z.-X. Yang, P. Ma, D. Lin, Q. Zheng and Y. Huo, *Inorg. Chem.*, 2021, 60, 7519-7526.
- 10. R.-f. Li, R.-h. Li, X.-f. Liu, X.-h. Chang and X. Feng, *RSC Adv.*, 2020, **10**, 6192-6199.
- 11. T. N. Nguyen, S. V. Eliseeva, C. Y. Chow, J. W. Kampf, S. Petoud and V. L. Pecoraro, *Inorg. Chem. Front.*, 2020, 7, 1553-1563.
- 12. P. Wang, R.-Q. Fan, Y.-L. Yang, X.-R. Liu, P. Xiao, X.-Y. Li, W. Hasi and W.-W. Cao, *CrystEngComm*, 2013, **15**, 4489-4506.