Supporting Information

Sc₂F₂(B₂O₅): A Deep Ultraviolet Scandium Borate Fluoride Exhibiting Large

Birefringence Induced by the Synergistic Effect of B₂O₅ and ScO_nF₂ Groups

Ru-Ling Tang*^{a,b,c}, Wei Xu,^a Wei-Jie Xie,^b Chun-Li Hu*^b

Supplementary Index

Tables and Figures.

Table S1. Selected bond distances (Å) and angles (deg) for $Sc_2F_2(B_2O_5)$.

Table S2. Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (A² x 10³) and Calculated bond valence sum (BVS) for $Sc_2F_2(B_2O_5)$.

Table S3. Configuration, anion groups, space group and synthesis condition of known rare earth borate fluorides.

Figure S1. Simulated and experimental powder X-ray diffraction patterns of Sc₂F₂(B₂O₅).

Figure S2. Energy dispersive X-ray spectroscopy (EDX) of Sc₂F₂(B₂O₅).

- **Figure S3.** The IR spectrum of $Sc_2F_2(B_2O_5)$.
- **Figure S4.** The TG-DSC curves of $Sc_2F_2(B_2O_5)$.

Sc(1)-F(1)	2.0267(4)	O(1)-B(1)	1.337(6)			
Sc(1)-F(1)#1	2.0267(4)	O(2)-B(1)	1.350(6)			
Sc(1)-O(2)	2.071(3)	B(1)-O(3)#2	1.418(6)			
Sc(1)-O(2)#2	2.157(3)	B(2)-O(5)#3	1.372(6)			
Sc(1)-O(4)	2.177(3)	B(2)-O(3)#6	1.412(6)			
Sc(1)-O(5)#3	2.188(3)	O(4)-B(2)	1.372(6)			
Sc(1)-O(3)	2.410(3)	O(1)-B(1)-O(2)	126.6(4)			
Sc(2)-F(2)	2.0201(3)	O(1)-B(1)-O(3)#2	123.2(4)			
Sc(2)-F(2)#1	2.0201(3)	O(2)-B(1)-O(3)#2	110.2(4)			
Sc(2)-O(5)	2.047(3)	O(4)-B(2)-O(5)#3	114.9(4)			
Sc(2)-O(4)	2.056(3)	O(4)-B(2)-O(3)#6	120.8(4)			
Sc(2)-O(1)	2.120(3)	O(6)#3-B(2)-O(3)#6	124.2(4)			
Sc(2)-O(1)#4	2.124(3)					

Table S1. Selected bond distances (Å) and angles (deg) for $Sc_2F_2(B_2O_5)$.

Symmetry transformations used to generate equivalent atoms: #1 x, y, z+1 #2 -x,-y,-z+1 #3 x-1/2,-y+1/2, z #4 -x+1,-y,-z+1 #5 x, y, z-1 #6 x+1/2,-y+1/2, z

Table S2. Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters (Å² × 10³) and bond valence sums (BVS) for Sc₂F₂(B₂O₅).

Atom	x/a	y/b	z/c	U(eq)	BVS
Sc(1)	318(1)	1183(1)	5000	10(1)	2.988
Sc(2)	4364(1)	1094(1)	5000	9(1)	3.104
F(1)	195(3)	1266(2)	0	32(1)	0.990
F(2)	4326(3)	1101(2)	0	30(1)	0.973
O(1)	3741(3)	-338(2)	5000	15(1)	2.053
O(2)	1278(3)	-121(2)	5000	17(1)	2.042
O(3)	-2090(3)	1622(2)	5000	20(1)	1.995
O(4)	2435(3)	1704(2)	5000	18(1)	1.981
O(5)	5558(3)	2285(2)	5000	18(1)	1.983
B(1)	2437(5)	-651(4)	5000	14(1)	3.035
B(2)	1970(6)	2617(4)	5000	21(1)	2.890

Compound	Metal coordination	Anion groups	Space group	Synthesis condition
LnB_2O_4F (Ln= La, Ce)	LnO ₇ F ₃	BO ₃ ³⁻	Pbca	high temperature and high pressure
Eu ₅ (BO ₃) ₃ F	EuO ₈ F, EuO ₇ F, EuO ₇	BO ₃ ³⁻	Pnma	boron nitride crucible, argon flow
<i>RE</i> ₂ (BO ₃)F ₃ (<i>RE</i> =La, Tb, Dy, Ho)	$\begin{array}{l} REO_4F_5,REO_7F_2,REO_3F_4,\\ REO_4F_3 \end{array}$	BO ₃ ³⁻	P21/c	traditional high temperature solid-state method
$Gd_4(BO_2)O_5F$	GdO_6F , GdO_5F_2	BO ₂ -	Pmmn	boron nitride crucible, argon flow
$RE_4B_4O_{11}F_2$ (RE = La, Pr, Nd, Sm, Eu, Ga, Tb, Dy, Ho, Er)	<i>RE</i> O ₆ F ₃ , <i>RE</i> O ₈ F ₂ , <i>RE</i> O ₁₀ , <i>RE</i> O ₉ F, <i>RE</i> O ₇ F ₃ , <i>RE</i> O ₉ F ₂ , <i>RE</i> O ₇ F ₂	B ₄ O ₁₁ ¹⁰⁻	C2/c	high temperature and high pressure
$Ln_3(BO_3)_2F_3$ (Ln =Sm, Eu, and Gd)	LnO_4F_5 , LnO_7F_2 .	BO3 ³⁻	C2/c	traditional high temperature solid-state method
$P_{r4}B_3O_{10}F$	PrO_7F_2 , PrO_8F , PrO_9	BO ₃ ³⁻	٩	high temperature and high pressure
<i>RE</i> ₅ (BO ₃) ₂ F ₉ (<i>RE</i> =Dy, Fr. Yb. Ho. Tm)	<i>RE</i> O ₃ F ₅ , <i>RE</i> O ₃ F ₄ , <i>RE</i> O ₄ F ₃	BO ₃ ³⁻	C2/c	high temperature and high pressure

Table S3. Configuration, anion groups, space group and synthesis condition of known rare earth borate fluorides.

Figure S1. Simulated and experimental powder X-ray diffraction patterns of Sc₂F₂(B₂O₅).

Figure S2. Energy dispersive X-ray spectroscopy (EDX) of $Sc_2F_2(B_2O_5)$.

Figure S3. The IR spectrum of $Sc_2F_2(B_2O_5)$.

Figure S4. The TG-DSC curves of $Sc_2F_2(B_2O_5)$.