Supporting information

Spinel structured metal oxide embedded MXene nanocomposites

for efficient water splitting reactions

Dhanasekaran Vikraman^a, Sajjad Hussain^{b,c}, Liu Hailiang^d, K. Karuppasamy^a, Periyasamy Sivakumar^e, P. Santhoshkumar^f, Jongwan Jung^{b,c}, Hyun-Seok Kim^{a*}

^a Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea.

^b.Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea. ^c.Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea.

^d Convergence Semiconductor Research Center, Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea.

^e Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University-Seoul, Seoul 04620, Korea.

^fMillimeter-wave Innovation Technology (MINT) Research Centre, Dongguk University-Seoul, Seoul 04620, Korea.

*Email: hyunseokk@dongguk.edu; Tel: +82-2-2260-3996; Fax: +82-2-2277-8735

Figure S1. XRD pattern of MAX phase Ti₃AlC₂.

Figure S2. FESEM images of MAX phase with different magnifications

Figure S3. XPS survey spectra for the (a) $MXene/Co_3O_4$ and (b) $MXene/Fe_3O_4$ nanocomposites.

Figure S4. EDX spectrum and their composition chart for MXene/Co₃O₄ nanocomposites

Figure S5. EDX spectrum and their composition chart for MXene/Fe₃O₄ nanocomposites

Figure S6. HER overpotential for bare NF, Pt/C, MXene, Co₃O₄, Fe₃O₄, MXene/Co₃O₄, and MXene/Fe₃O₄ composites

Figure S7. LSV profiles before and after 24 h continuous OER reaction

Figure S8. OER overpotential for RuO₂, MXene, Co₃O₄, Fe₃O₄, MXene/Co₃O₄, and MXene/Fe₃O₄ composites

Figure S9. Non-faradaic region CVs for the(a) MXene/Co₃O₄ and (b) MXene/Fe₃O₄ nanocomposites at different scan rates.

MXene/Co₃O₄

Figure S10. XPS profiles after 24 h overall water splitting for $MXene/Co_3O_4$ composites: (a) Ti 2p, (b) C 1s, (h) O 1s and (d) Co 2p regions

Figure S11. XPS profiles after 24 h overall water splitting for MXene/Fe₃O₄ composites: (a) Ti 2p, (b) C 1s, (h) O 1s and (d) Fe 2p regions

Sample	BET (m ² .g ⁻¹)	Pore volume (cm ³ .g ⁻¹)	Mean pore diameter (nm)
MXene	4.67	0.041	35.41
Co ₃ O ₄	6.23	0.035	22.45
Fe ₃ O ₄	3.42	0.024	27.56
MXene/Co ₃ O ₄	13.3	0.076	22.91
MXene/Fe ₃ O ₄	9.06	0.052	22.93

Table S1. N_2 sorption analysis of metal oxide, MXene and their composites.

Electrocatalyst	Electrolyte	η (mV)	Tafel Slope (mV·dec ⁻¹)	Ref.
MXene/Co ₃ O ₄	1 M KOH	52 @ 10 mA/cm ²	59	This work
MXene/Fe ₃ O ₄	1 М КОН	62 @ 10 mA/cm ²	81	This work
$FeNi@MXene (Mo_2TiC_2T_x)$	1M KOH	160@ 10 mA/cm ²	103.46	[1]
MoS ₂ @Mo ₂ CTx	$0.5M H_2SO_4$	176@10 mA/cm	207	[2]
Mo ₂ CT _x /2H-MoS ₂ nanohybrid	$0.5M H_2SO_4$	119@10 mA/cm	60	[3]
Co-CoO/Ti ₃ C ₂ - MXene/NF	1M KOH	45@10 mA/cm	47	[4]
$Pd@MoS_2/Mo_2TiC_2T_x$	0.5M H ₂ SO ₄ &1M KOH	92 and 100 @10 mA/cm	60 & 80	[5]
MWCNT/V ₂ CTx	1М КОН	27@ 10 mA/cm ²	41	[6]
FeS ₂ @MXene	1M KOH	87@ 10 mA/cm ²	97.7	[7]
Mo ₂ C/graphene	$0.5M H_2 SO_4$	236@10 mA/cm	73	[8]
Mo ₂ CTx:Co	$0.5M H_2SO_4$	180@10 mA/cm	59	[9]
Defect-rich CoS _{1.097} /MoS ₂	0.5M H ₂ SO ₄ , 1M KOH & 1M PBS	228, 249 & 341@10 mA/cm	59, 75 and 85	[10]
NiFe ₂ O ₄ /Ti ₃ C ₂	1M KOH	173@ 10 mA/cm ²	112.2	[11]
CoS ₂ @MXene	1M KOH	175@ 10 mA/cm ²	97	[12]
$Co(S_xSe_{1-x})_2$	1M KOH	122@ 10 mA/cm ²	86	[13]
Ni _{0.9} Fe _{0.1} PS ₃ @ MXene	1M KOH	198@ 10 mA/cm ²	114	[14]
CoP@MXene	1M KOH	116@ 10 mA/cm ²	57	[15]
Ni/NiS/NC	1M KOH	70@ 10 mA/cm ²	45	[16]
Mesh CrFe-CoP NSs	1М КОН	103.7@ 10 mA/cm ²	90.9	[17]
Co-Ni _x P _y @Co ₃ O ₄	1М КОН	72@ 10 mA/cm ²	-	[18]
Ru-SA/Ti ₃ C ₂ T _x	1М КОН	70@ 10 mA/cm ²	27.7	[19]

 Table S2. HER catalytic performances MXene@oxide-based electrocatalysts

Electrocatalyst	Electrolyte	η (mV)	Tafel Slope (mV·dec ⁻¹)	Ref.
MXene/Co ₃ O ₄	1 M KOH	310@ 10 mA/cm ²	74	This work
MXene/Fe ₃ O ₄	1 М КОН	270 @ 10 mA/cm ²	54	
$FeNi@MXene (Mo_2TiC_2T_x)$	1M KOH	190@ 10 mA/cm ²	42.78	[1]
$Fe_3O_4/Ti_3C_2T_x$	1M KOH	290@ 10 mA/cm ²	65.1	[20]
$Co_3O_4/Ti_3C_2T_x$	1M KOH	300 mV@ 10 mA/cm ²	118	[21]
Co-CoO/Ti ₃ C ₂ - MXene/NF	1M KOH	271@10 mA/cm	47	[4]
MWCNT/V ₂ CTx	1M KOH	469@ 10 mA/cm ²	77	[6]
FeS ₂ @MXene	1M KOH	240@ 10 mA/cm ²	58.7	[7]
NiFe ₂ O ₄ /Ti ₃ C ₂	1M KOH	266@ 10 mA/cm ²	73.6	[11]
CoS ₂ @MXene	1M KOH	150@ 10 mA/cm ²	92	[12]
$Co(S_xSe_{1-x})_2$	1M KOH	151@ 10 mA/cm ²	65.5	[13]
Ni _{0.9} Fe _{0.1} PS ₃ @ MXene	1M KOH	152@ 10 mA/cm ²	36.5	[14]
CoP@MXene	1M KOH	146@ 10 mA/cm ²	32.5	[15]
NiCoS/Ti ₃ C ₂ T _x	1M KOH	365@ 10 mA/cm ²	58	[22]
Ni/NiS/NC	1M KOH	337@ 10 mA/cm ²	52	[16]
Mesh CrFe-CoP NSs	1M KOH	256.4@ 10 mA/cm ²	55.9	[17]
Co-Ni _x P _y @Co ₃ O ₄	1M KOH	120@ 10 mA/cm ²	-	[18]
IrCo@ac-Ti ₃ C ₂	1М КОН	220@ 10 mA/cm ²	60	[23]
Ru-SA/Ti ₃ C ₂ T _x	1М КОН	290@ 10 mA/cm ²	37.9	[19]
Ni _{0.7} Fe _{0.3} PS ₃ @Ti ₃ C ₂ T _m	1M KOH	282@ 10 mA/cm ²	36.5	[14]

 Table S3. OER catalytic performances MXene@oxide-based electrocatalysts

Electrocatalyst	Electrolyte	Cell voltage (V)	Ref.	
MXene/Co ₃ O ₄	1 M KOH	1.51 @ 10 mA/cm ²	This	
MXene/Fe ₃ O ₄	1 M KOH	1.54 @ 10 mA/cm ²	I IIIS WORK	
$FeNi@MXene (Mo_2TiC_2T_x)$	1M KOH	1.74 @ 50 mA/cm ²	[1]	
Co-CoO/Ti ₃ C ₂	1М КОН	1.55 @10 mA/cm ²	[4]	
FeS ₂ @MXene	1M KOH	1.57 @ 10 mA/cm ²	[7]	
CoS ₂ @MXene	1М КОН	1.62 @ 10 mA/cm ²	[12]	
$Co(S_xSe_{1-x})_2$	1M KOH	1.63 @ 10 mA/cm ²	[13]	
Ni _{0.9} Fe _{0.1} PS ₃ @ MXene	1M KOH	1.65 @ 10 mA/cm ²	[14]	
CoP@MXene	1M KOH	1.56 @ 10 mA/cm ²	[15]	
Ni/NiS/NC	1М КОН	1.61 @ 10 mA/cm ²	[16]	
Mesh CrFe-CoP NSs	1M KOH	1.55 @ 10 mA/cm ²	[17]	
Co-Ni _x P _y @Co ₃ O ₄	1М КОН	$1.47 @ 10 \text{ mA/cm}^2$	[18]	
Ru-SA/Ti ₃ C ₂ T _x	1М КОН	1.56 @ 10 mA/cm ²	[19]	

 Table S4. Comparison of overall water splitting of MXene@oxide with various

 electrocatalysts.

References

[1] J. Wang, P. He, Y. Shen, L. Dai, Z. Li, Y. Wu, C. An, FeNi nanoparticles on Mo2TiC2Tx MXene@ nickel foam as robust electrocatalysts for overall water splitting, Nano Research, 14 (2021) 3474-3481.

[2] J. Ren, H. Zong, Y. Sun, S. Gong, Y. Feng, Z. Wang, L. Hu, K. Yu, Z. Zhu, 2D organ-like molybdenum carbide (MXene) coupled with MoS 2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction, CrystEngComm, 22 (2020) 1395-1403.

[3] K.R.G. Lim, A.D. Handoko, L.R. Johnson, X. Meng, M. Lin, G.S. Subramanian, B. Anasori, Y. Gogotsi, A. Vojvodic, Z.W. Seh, 2h-Mos2 on Mo2ct X Mxene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution, ACS nano, 14 (2020) 16140-16155.

[4] D. Guo, X. Li, Y. Jiao, H. Yan, A. Wu, G. Yang, Y. Wang, C. Tian, H. Fu, A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting, Nano Research, 15 (2022) 238-247.

[5] L.-H. Zheng, C.-K. Tang, Q.-F. Lü, J. Wu, MoS2/Mo2TiC2Tx supported Pd nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media, International Journal of Hydrogen Energy, 47 (2022) 11739-11749.

[6] S.A. Zahra, S. Rizwan, MWCNT-modified MXene as cost-effective efficient bifunctional catalyst for overall water splitting, RSC advances, 12 (2022) 8405-8413.

[7] S. Peng, Y. Xie, H. Yu, L. Deng, D. Yu, L. Li, R. Amin, A.E. Fetohi, M.Y. Maximov, K. El-Khatib, Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting, Inorganic Chemistry Frontiers, (2022).

[8] D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large-area 2D Mo2C on in situ grown graphene, Advanced Materials, 29 (2017) 1700072.

[9] D.A. Kuznetsov, Z. Chen, P.V. Kumar, A. Tsoukalou, A. Kierzkowska, P.M. Abdala, O.V. Safonova, A. Fedorov, C.R. Müller, Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction, Journal of the American Chemical Society, 141 (2019) 17809-17816.

[10] J. Sun, Z. Huang, T. Huang, X. Wang, X. Wang, P. Yu, C. Zong, F. Dai, D. Sun, Defectrich porous CoS1. 097/MoS2 hybrid microspheres as electrocatalysts for pH-universal hydrogen evolution, ACS Applied Energy Materials, 2 (2019) 7504-7511. [11] P.V. Shinde, P. Mane, B. Chakraborty, C.S. Rout, Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: Experiments and theories, Journal of Colloid and Interface Science, 602 (2021) 232-241.

[12] S. Han, Y. Chen, Y. Hao, Y. Xie, D. Xie, Y. Chen, Y. Xiong, Z. He, F. Hu, L. Li, Multidimensional hierarchical CoS2@ MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting, Science China Materials, 64 (2021) 1127-1138.

[13] L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang, Y. Wang, Tuning unique peapod-like Co (SxSe1–x) 2 nanoparticles for efficient overall water splitting, Advanced Functional Materials, 27 (2017) 1701008.

[14] C.F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang, Q. Yan, Self-assemble and in situ formation of Ni1– xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting, Advanced Energy Materials, 8 (2018) 1801127.

[15] N.C.S. Selvam, J. Lee, G.H. Choi, M.J. Oh, S. Xu, B. Lim, P.J. Yoo, MXene supported Co x A y (A=OH, P, Se) electrocatalysts for overall water splitting: unveiling the role of anions in intrinsic activity and stability, Journal of Materials Chemistry A, 7 (2019) 27383-27393.

[16] J. Ding, S. Ji, H. Wang, H. Gai, F. Liu, V. Linkov, R. Wang, Mesoporous nickelsulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis, International Journal of Hydrogen Energy, 44 (2019) 2832-2840.

[17] S. Sun, Z. Wang, S. Meng, R. Yu, D. Jiang, M. Chen, Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting, Nanotechnology, 33 (2021) 075204.

[18] B. Lu, J. Zang, W. Li, J. Li, Q. Zou, Y. Zhou, Y. Wang, Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting, Chemical Engineering Journal, 422 (2021) 130062.

[19] X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu, D. Qi, J. Sun, Y. Liu, H. Bao, L. Zhuo, Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media, Small, 16 (2020) 2002888.

[20] L. Zhang, Z. Wang, W. Chen, R. Yuan, K. Zhan, M. Zhu, J. Yang, B. Zhao, Fe 3 O 4 nanoplates anchored on Ti 3 C 2 T x MXene with enhanced pseudocapacitive and electrocatalytic properties, Nanoscale, 13 (2021) 15343-15351.

[21] Y. Lu, D. Fan, Z. Chen, W. Xiao, C. Cao, X. Yang, Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution, Science Bulletin, 65 (2020) 460-466.

[22] H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Metal–organic framework-derived nickel–cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution, ACS applied materials & interfaces, 10 (2018) 22311-22319.

[23] T.A. Le, N.Q. Tran, Y. Hong, M. Kim, H. Lee, Porosity-Engineering of MXene as a Support Material for a Highly Efficient Electrocatalyst toward Overall Water Splitting, ChemSusChem, 13 (2020) 945-955.