Supporting Information For:

A MOF chemosensor for highly sensitive and ultrafast detection of folic acid in biofriendly medium, paper strips and real samples

Srijan Mukherjee, Subhrajyoti Ghosh and Shyam Biswas*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

* Corresponding author. Tel: 91-3612583309, Fax: 91-3612582349.

E-mail address: sbiswas@iitg.ac.in.

1.1. Materials and Characterization Methods

All the reagents and solvents were procured from commercial sources and used without purification, except the 2-((5-(dimethylamino)naphthalene)-1-sulfonamido) terephthalic acid (H₂BDC-NH-dansyl) linker. The notations used for characterization of the bands are broad (br), strong (s), very strong (vs), medium (m), weak (w) and shoulder (sh). PXRD data were collected by using Rigaku Smartlab X-ray diffractometer with Cu-Ka radiation ($\lambda = 1.54056$ Å), 50 kV of operating voltage and 100 mA of operating current. The Attenuated Total Reflectance Infrared (ATR-IR) spectra were recorded using PerkinElmer UATR Two at ambient condition in the region 400-4000 cm⁻¹. Thermogravimetric analysis (TGA) was carried out with a TG 209 F1 Libra Netzsch, thermogravimetric analyser in the temperature range of 25-700 °C in an N₂ atmosphere at the rate of 10 °C min⁻¹. N₂ sorption isotherms were recorded by using Quantachrome Autosorb iQ-MP volumetric gas adsorption equipment at -196 °C. Before the sorption analysis, the degassing of the compound was carried out at 100 °C under a high vacuum for 12 h. Fluorescence sensing studies were performed with a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. FE-SEM images were captured with a Zeiss (Zemini) scanning electron microscope. A BrukerAvance III 600 NMR spectrometer was used for recording 1H NMR spectra at 500 MHz. Mass spectra were recorded with an Agilent 6520 QTOF high-resolution mass spectrometer (HR-MS). UPS work was performed with PHI-5000 Versaprobe III (ULVAC-PHI Inc.) using He(I) (21.22 eV) excitation. Fluorescence lifetimes were measured using Picosecond Time-resolved and Steady State Luminescence Spectrometer on an Edinburg Instruments Lifespec II & FSP 920 instrument. Pawley refinement was carried out using Materials Studio software.

1.2. Analysis of band gap:

For UiO@Dansyl:

 $E_g = 2.83 \text{ eV}$ (calculated from the Tauc plot Fig. S48a, ESI[†])

 E_{VB} = Width of the He I UPS spectra from the excitation energy (21.22 eV)

$$E_{VB} = 21.22 - (14.64-0.13)$$

= 6.71 eV
 $E_{CB} = E_{VB} - E_{g}$
= 3.88 eV

With respect to RHE:

$$E_{VB} = 6.71 - 4.44 = 2.27 V$$

 $E_{CB} = 3.88 - 4.44 = -0.56 V$

For FA:

 $E_g = 2.83 \text{ eV}$ (calculated from the Tauc plot Fig. S48b, ESI[†])

$$E_{VB} = 21.22 - (13.58 - 0.37)$$
$$= 8.01 \text{ eV}$$

$$E_{CB} = E_{VB} - E_g$$
$$= 5.63 \text{ eV}$$

With respect to RHE:

$$E_{VB} = 6.71 - 4.44 = 3.57 V$$
$$E_{CB} = 3.88 - 4.44 = 1.19 V$$

Ultraviolet photoelectron spectroscopy was done to estimate the exact position of valance band (VB) and conduction band (CB) with minimum error (\pm 0.1 eV). Excitation source is used He I (excitation energy 21.22 eV). All the values (in eV) are got with respect to the vacuum. Values are converted in electrochemical energy (Volts) by subtracting 4.44. According to the literature 0 V vs RHE (Reversible Hydrogen Electrode) = -4.44 eV vs vacuum level.¹

1.3. Synthesis of H₂BDC-NH-dansyl linker:

Dimethyl 2-aminoterephthalate (209 mg, 1 mmol) and 5-(dimethylamino)naphthalene-1sulfonyl chloride (269 mg, 1 mmol) were added in a 50 mL round bottom flask containing 20 mL of dry DCM under N₂ atmosphere. Afterwards, 1 mL of pyridine was added dropwise in the reaction mixture and kept it for 24 h at a temperature of 60 °C. Then, the reaction mixture was extracted with DCM, water (3×20 mL) and saturated NaCl solution. The solvent was evaporated under reduced pressure and the product was used in the next step.

The product was dissolved in 20 mL solution of THF and ethanol (1 : 1). Thereafter, 10 mL of aqueous solution of LiOH (1 M) was added and the mixture was left for 3 h at 65 °C. Then, the organic part was evaporated under reduced pressure and the lemon yellow coloured solid product was obtained by neutralising with HCl (1 M). The precipitate was filtered out, washed several times with water and kept in an oven for overnight at 100 °C. Yield: 309 mg (75%). ¹H NMR (400 MHz, DMSO-d₆): $\delta = 11.56$ (br, 1H), 8.48 (d, 1H), 8.30 (d, 1H), 8.18 (d, 1H), 8.01 (s, 1H), 7.94 (d, 1H), 7.63 (m, 2H), 7.54 (d, 1H), 7.26 (d, 1H), 2.80 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 169.29$, 165.89, 150.94, 140.43, 139.69, 135.66, 133.52, 131.90, 130.88, 130.21, 128.70, 128.54, 123.72, 123.23, 119.44, 118.23, 117.93, 115.92, 45.10. ESI-MS (m/z): Calculate mass [M - H⁺] (m/z): 413.088, obtained mass [M - H⁺] (m/z): 413.104.

1.4. Fluorescence detection of folic acid in PBS buffer:

At first, activated **UiO@Dansyl** (3 mg) was taken in a Falcon tube. After that, **UiO@Dansyl** was dispersed in 3 mL of PBS buffer solution and sonicated for 15 min. To obtain a stable suspension of **UiO@Dansyl**, it was kept overnight at room temperature.

Aliquot (25 μ L) of the resulting suspension in PBS buffer was taken as a probe and mixed well with 2975 μ L of PBS buffer in a quartz fluorescence cuvette. In all the fluorescence titrations, excitation wavelength was 324 nm. The selectivity study was executed with a 5 mM PBS buffer solution of the analytes, prepared by proper dilution. During titration

experiments, sequential addition of 5 mM buffer solution of all the analytes was performed in 3 mL PBS buffer suspension of **UiO@Dansyl**. Quenching efficiency was calculated by the formula: $\left(1 - \frac{I}{I_0}\right) \times 100\%$, where I_0 refers to the initial fluorescence emission intensity of the probe and *I* refers to the emission fluorescence intensity after the addition of the analyte.

1.5. Fluorescence detection of folic acid in human blood serum samples:

From the right arm vein of a completely healthy individual (blood group: A^+), 10 mL of blood sample was taken out and centrifuged at 10000 rpm for 15 min to separate out the blood plasma. The pale-yellow coloured blood serum was collected in a Falcon tube and kept in a refrigerator at -20 °C. For fluorescence detection experiments, aliquots of different concentrations of folic acid were spiked into the human blood serum sample, which contained PBS buffer suspension of the probe.

1.6. Fluorescence detection of folic acid in human urine samples:

From a completely healthy individual, 10 mL of first early morning urine sample was collected and 500 μ L of HNO₃ was poured into the sample to eliminate all the interfering living organisms. The sample was centrifuged at 8000 rpm for 10 min. The supernatants were taken for the experiments. For fluorescence detection experiments, different aliquots of folic acid were spiked in the urine sample containing PBS buffer suspension of the probe.

1.7. Fluorescence detection of folic acid in pig liver:

A fresh pig liver sample was collected from a meat shop (Guwahati, India) and washed with distilled water to remove the blood stain. Then, the sample was cut into small pieces and 10 g of sample was taken. It was poured in 20 mL of PBS buffer solution in a Falcon tube and purged with nitrogen. Then, the solution was sonicated for 2 h and the sample was kept in water bath for 15 min at 40 °C. Then, the sample was centrifuged at 8000 rpm for 15 min. The supernatant was collected and taken for further experiments. For fluorescence detection experiments, different aliquots of the supernatant were spiked in the PBS buffer suspension of the probe.

1.8. Fluorescence detection of folic acid in food supplements and folic acid tablets:

For detection of the folic acid in orange and green gram dal (pulse), fresh samples were collected from the local market (Guwahati, India). The orange sample was squished and 1 mL of the orange juice was collected. It was diluted with 9 mL of PBS buffer, centrifuged at 8000 rpm and the supernatant was collected for the further experiments.

Fresh green gram dal was dried in sunlight for 1 day and then it was crushed into powder. 1 gm of powder sample was collected, poured into 10 mL of PBS buffer solution and sonicated

for 1 hour. The solution was centrifuged at 8000 rpm for 10 min and supernatant was collected for the next experiments.

Folic acid tablets FOLVITE[®] (Pfizer Ltd.) were collected from a local medical shop (Guwahati, India). Two tablets were crushed into powder before the addition of 4 mL of PBS buffer solution. The solution was sonicated to get homogeneous solution, which was followed by centrifugation at 8000 rpm for 5 min. The supernatant was collected for further experiments.

1.9. Fluorescence detection of folic acid in different aqueous media:

At first, activated **UiO@Dansyl** (3 mg) was taken in a Falcon tube. After that, **UiO@Dansyl** was dispersed in 3 mL of PBS buffer solution and sonicated for 15 min. To obtain a stable suspension of **UiO@Dansyl**, it was kept overnight at room temperature.

Aliquot (25 μ L) of the resulting suspension in PBS buffer was taken as a probe and mixed well with 2975 μ L of different water sample (Lake water, river water, tap water, distilled water) in a quartz fluorescence cuvette. In all the fluorescence titrations, excitation wavelength was 324 nm. The fluorescent titration study was executed with a 5 mM FA acid solution in different water sample was prepared by proper dilution. Aliquot of the resulting suspension in PBS buffer was taken as a probe and mixed well with 2975 μ L of different water sample.

2.0. Comparison of concentration of FA by fluorescence and UV-Vis method:

Previously in many literatures, UV-Vis spectroscopy technique was used as a tool for quantification of FA. FA is UV active molecule. It shows its absorption maxima at $\lambda = 354$ nm. With increasing concentration of the FA, absorbance at λ_{max} increases. Here, we have added 25 µL aliquot of FA of different concentrations to water (2975 µL) in UV cuvette and recorded the absorbance value at λ_{max} . Calibration plot (Fig. S47, ESI[†]) was drawn taking the concentration of FA in *x* axis and absorbance value at λ_{max} in *y* axis. Calibration curve of fluorometric titration (Figure S32, ESI[†]) was previously obtained by plotting the concentration of FA in *x* axis and fluorescence intensity value in *y* axis.

Further, few samples of FA with different concentrations were prepared in water. The concentration of FA for all the samples were determined by both UV and fluorescence titrations using the respective calibration curves. The results of FA detection by both methods are documented in Table S4 (ESI[†]). The recovery of FA by fluorescence method was found 97.4-100.2%. The results demonstrate that the concentrations of FA found by both the techniques are comparable.

Scheme S1. Scheme for synthesis of H₂BDC-NH-dansyl linker.

Figure S1. ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of H₂BDC-NH-dansyl linker.

Figure S2. ¹³C NMR spectrum (500 MHz, DMSO-*d*₆) of H₂BDC-NH-dansyl linker.

Figure S3. ESI-MS spectrum of H₂BDC-NH-dansyl linker.

Figure S4. IR spectra of H₂BDC-NH-dansyl linker (green), as-synthesized UiO@Dansyl (red), activated UiO@Dansyl (pink).

Figure S5. TGA curves of as-synthesized **UiO@Dansyl** (black), activated **UiO@Dansyl** (red) recorded in the temperature range of 30-700 °C with a heating rate of 4 °C min⁻¹.

Figure S6. N₂ sorption isotherms of activated UiO@Dansyl (recorded at 77 K).

Figure S7. FE-SEM images of UiO@Dansyl under different magnifications.

Figure S8. EDX spectrum of UiO@Dansyl.

Figure S9. EDX elemental mapping of UiO@Dansyl.

Figure S10. PXRD patterns of simulated UiO-66 (black), as-synthesized UiO@Dansyl (blue), activated UiO@Dansyl (red).

Figure S11. PXRD patterns of (a) activated **UiO@Dansyl** (black), after stirring in (b) pH 2 (red), (c) pH 4 (green), (d) pH 6 (blue), (e) pH 8 (pink), (f) pH 10 (orange) and (g) pH 12 (olive green) solutions.

Figure S12. PXRD patterns of (a) activated **UiO@Dansyl** (black), after stirring in (b) 1M HCl (red), (c) DCM (blue), (d) DMF (green), (e) MeOH (pink) and (f) PBS (pH = 7.4) buffer (orange) solutions.

Figure S13. Change in fluorescence emission intensity of activated **UiO@Dansyl** (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM α -ketoglutaric acid solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S14. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM arginine (Arg) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S15. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM ascorbic acid (AA) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S16. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM aspartic acid (Asp) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S17. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1[']) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM cysteine solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S18. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM cysteine solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S19. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM fructose solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S20. Change in fluorescence emission intensity of activated UiO@Dansyl (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM glutamine (gln) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S21. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM glucose solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S22. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1[']) (in PBS medium) upon addition of 300 μ L of 5 mM folic acid in presence of 300 μ L of 5 mM histidine (his) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S23. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1[']) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM Uric acid solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S24. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1[']) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM proline (pro) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S25. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM tryptophan (trp) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S26. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM citric acid solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S27. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM carbonate (CO₃²⁻) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S28. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM bicarbonate (HCO₃) solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S29. Change in fluorescence emission intensity of activated UiO@Dansyl (1) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM K⁺ solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S30. Change in fluorescence emission intensity of activated UiO@Dansyl (1) (in PBS medium) upon addition of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM Mg²⁺ solution ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S31. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon of 300 μ L of 5 mM FA in presence of 300 μ L of 5 mM Na⁺ solution (λ_{ex} = 325 nm and λ_{em} = 428 nm).

Figure S32. Stern-Volmer plot for fluorescence quenching of activated **UiO@Dansyl** in PBS medium against increasing concentration of FA.

Figure S33. Stern-Volmer plot for fluorescence quenching of activated **UiO@Dansyl** in PBS medium against increasing different concentrations of FA: (a) milli molar, (b) micro molar and (c) nano molar.

Figure S34. Change in fluorescence emission intensity of activated UiO@Dansyl in PBS medium as a function of FA concentration.

Figure S35. UV-absorption spectra of all analytes and emission spectra of UiO@Dansyl MOF.

Figure S36. Excitation (red) and emission (black) spectra of UiO@Dansyl in PBS buffer medium.

Figure S37. Quenching of fluorescence emission intensity of activated UiO@Dansyl with introduction of FA (5 mM, 300 μ L) in different pH media.

Figure S38. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon incremental addition of FA tablet extract (FA Tab) ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S39. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1[']) (in PBS medium) upon incremental addition of green gram dal extract (FA Tab) ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S40. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1[']) (in PBS medium) upon incremental addition of orange extract (FA Tab) ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S41. Change in fluorescence emission intensity of activated **UiO@Dansyl** (1) (in PBS medium) upon incremental addition of pig liver extract (FA Tab) ($\lambda_{ex} = 325$ nm and $\lambda_{em} = 428$ nm).

Figure S42. Quenching of fluorescence emission intensity of activated UiO@Dansyl with introduction of FA (5 mM, 300 μ L) in different aqueous media.

Figure S43. Lifetime decay profile of UiO@Dansyl in presence and absence of FA ($\lambda_{ex} = 336$ monitored at 429 nm).

Figure S44. PXRD pattern comparison between activated UiO@Dansyl (red) and UiO@Dansyl after 5th cycle of recyclability (blue).

Figure S45. ¹H NMR spectrum (500 MHz, DMSO- d_6) of **UiO@Dansyl** MOF after 5th cycle of recyclability (digested with minimum amount of HF).

Figure S46. UV-Vis spectra of FA and UiO@Dansyl MOF.

Figure S47. Calibration curve obtained from UV-Vis spectra for FA in water (absorption maxima was taken at 354 nm).

Figure S48. (a) UV-DRS spectrum of UiO@Dansyl (Tauc plot is shown inset). (b) UV-DRS spectrum of folic acid (Tauc plot was shown inset). (c) UPS spectrum of UiO@Dansyl. (d) UPS spectrum of folic acid.

		1		
Background (mol L ⁻¹)	FA Spiked (mol L ⁻¹)	FA Found (mol L ⁻¹)*	Recovery (%)	RSD (%) (n=3)
	8.0×10 ⁻⁵	7.63	95.4	0.54
2.09×10^{-6}	1.5×10^{-5}	1.6×10^{-5}	101.3	1.56

Table S1. Detection of FA in human serum samples.

* Excluding background.

Table S2. Detection of FA in human urine samples.

 1.6×10^{-6}

Background (mol L ⁻¹)	FA Spiked (mol L ⁻¹)	FA Found (mol L ⁻¹)*	Recovery (%)	RSD (%) (n=3)
	8.0×10 ⁻⁵	8.1×10 ⁻⁵	101.00	0.42
1.22×10^{-6}	1.5×10 ⁻⁵	1.6×10 ⁻⁵	106.7	1.31
	1.6×10 ⁻⁶	1.7×10^{-6}	106.2	6.58

 1.7×10^{-6}

108.2

6.74

* Excluding background.

Table S3. Fluorescence lifetime of UiO@Dansyl before and after addition of FA ($\lambda_{ex} = 336$ nm), pulsed diode laser).

Volume of FA (µL)	<i>a</i> ₁	<i>a</i> ₂	τ_1 (ns)	$ au_2$ (ns)	$< \tau >* (ns)$	χ^2
0	0.555	0.944	2.033	14.634	14.942	1.121
300	0.139	0.860	0.929	10.926	9.525	1.093

Average lifetime $<\tau>* = a_1\tau_1 + a_2\tau_2$

Table S4. Comparison of FA concentration obtained by UV-Vis and fluorescence spectroscopy.

Sl. No	FA Spiked (mol L ⁻¹)	Concentration of FA Found by UV-Vis Spectroscopy (mol L ⁻¹)*	Concentration of FA Found by Fluorescence Spectroscopy (mol L ⁻¹)	Recovery (%) of FA by Fluorescence Spectroscopy	
1	6.49×10 ⁻⁵	6.53×10 ⁻⁵	6.47×10 ⁻⁵	99.6	
2	4.42×10^{-5}	4.44×10 ⁻⁵	4.31×10 ⁻⁵	97.4	
3	2.26×10 ⁻⁵	2.27×10 ⁻⁵	2.26×10 ⁻⁵	100.2	

Table S5. Calculated HOMO and LUMO energy of Linker and all competitive analytes.

Analyte	HOMO (eV)	LUMO (eV)	
H ₂ BDC-NH-SO ₂ -dansyl	-2.405759874	-6.211818392	
Folic acid	-2.526306376	-6.344610024	
Tryptophan	-0.037551732	-6.316310168	
Arginine	0.656066854	-7.458372626	
Proline	-0.320278178	-7.66273024	
Aspertic acid	0.148030016	-7.580007584	
Cystine	-0.456607292	-7.073875544	
Cysteine	-0.431844918	-6.852374748	
Glutamine	-0.268848632	-6.77291746	
Histidine	-0.102586978	-7.215919052	
Ascorbic acid	-0.25306602	-7.452930346	
Alpha keto glutaric acid	-0.980154628	-7.74844615	
Citric acid	-0.865594634	-7.594973854	
Uric acid	-0.943963466	-7.338642466	
Glucose	7.161768366	-8.123691356	
Fructose	7.477420606	-7.98110362	

Table S6. Comparison of various probes previously reported in the literature for the detection of folic acid.

SI.	Sensor	Analytical	Sample	Response	LOD	Linear	Reusab	Ref.
NO.	Material	Method		Time	1.00	Range	ility	41 •
1	UIO@Dansyl	fluorometric	tablets,	< 5 s	1.20 M	2×10^{-5}	yes	this
			serum,		nivi	8.2 nivi		work
2	Eq.O	fluoromatria	urine	10 min	21.70	02112	n 0	2
2	Te_3O_4 - $7nS\cdotMn^{2+}/SiO$	Indotoineutic	serum	10 11111	21.70 nM	0.2-11.5 M	110	Z
	$2 \text{IIS.WII} / 5 \text{IO}_2$				111V1	μινι		
3	$\frac{-1312}{MOE_A gClO_{42}}$	fluorometric	serum	5 min	/9 nM	0.1_30	no	3
5	abtz	nuorometrie	plasma	5 11111	47 IIIVI	μM	110	5
4	MIP on dual-	fluorometric	blood	3 min	32.00	0.5–20	no	4
	color CdTe		plasma		nM	μM		
	QDs		-					
5	Au/Ag NCs	fluorometric	serum,	5 min	0.47	1-100	no	5
			urine and		nM	μΜ		
			tablet					
6	Eu-MOF	fluorometric	tablet	-	0.30	0.25-	no	6
					μМ	12.5 μM		
7	Aconitic acid	fluorometric	tablet,	1 min	0.04	1 - 100	no	7
	derived carbon		Food		μΜ	μM		
	dots		suppleme					
			nts					
8	Ultrasonic	capillary	tablets,	-	20.00	10-0.005	-	8
	extraction	electrophoresis	apple		nM	μM		
		with	juices,					
		chemiluminesc	human					
-		ence	urine					-
9	ion pair-based	high	flour, egg	-	4.53-	2.2-453	no	9
	dispersive	performance	yolk,		9.2 nM	nM		
	liquid-liquid	liquid	orange					
	microextractio	chromatograph	Juice					
10	II Mrs.SrnO./CCE	y alaatmaahamiaal	toblata		0.070	0 5 500		10
10	MIII-SIIO ₂ /GCE	electrochemical	tablets	-	0.079	0.3-300 M	yes	10
11	NITIO /CDE	alastrochamical	tablata		2 00		n 0	11
11	NITIO3/CFE	electrochemical	urino	-	2.90 nM	10.60	110	11
			ume		111111	10.09 uM		
12	Graphene	electrochemical	tablets	_	0.025	0.90_	no	12
12	modified	cicculocitentiear	urine	_	uM	8 52 µM	110	12
	electrode		unite		μινι	0.52 µm		
13	MB/ERGO/GC	electrochemical	tablets	_	0.5	4.00-	no	13
	E				μM	167 μM		-0
14	Pt:Co/IL/CPE	electrochemical	tablet,	-	40.0	0.1-500	no	14
			food		nM	μM		
			suppleme					
			nts					
15	CuONs/MWC	electrochemical	tablet	450 s	15.0	0.01-	no	15
	NTs/GCE				nM	0.90 µM		

References:

- X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang and M. T. F. Rodrigues, High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts, *Adv. Energy Mater.*, 2017, **7**, 1700025.
- 2. X. Li and L. Chen, Fluorescence probe based on an amino-functionalized fluorescent magnetic nanocomposite for detection of folic acid in serum, *ACS Appl. Mater. Interfaces*, 2016, **8**, 31832-31840.
- 3. B. Yang, X. Li, L. Wang, J. An, T. Wang, F. Zhang, B. Ding and Y. Li, A waterstable MOF-AgClO4-abtz as fluorescent sensor for detection of folic acid based on inner filter effect, *Talanta*, 2020, **217**, 121019.
- 4. A. A. Ensafi, P. Nasr-Esfahani and B. Rezaei, Simultaneous detection of folic acid and methotrexate by an optical sensor based on molecularly imprinted polymers on dual-color CdTe quantum dots, *Anal. Chim. Acta*, 2017, **996**, 64-73.
- 5. S. L. Fereja, P. Li, J. Guo, Z. Fang, Z. Zhang, Z. Zhuang, X. Zhang, K. Liu and W. Chen, Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid, *Talanta*, 2021, **233**, 122469.
- 6. K. F. Kayani and K. M. Omer, A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations, *New J. Chem.*, 2022, **46**, 8152-8161.
- J. Qian, F. Quan, F. Zhao, C. Wu, Z. Wang and L. Zhou, Aconitic acid derived carbon dots: Conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells, *Sens. Actuators B Chem.*, 2018, 262, 444-451.
- 8. S. Zhao, H. Yuan, C. Xie and D. Xiao, Determination of folic acid by capillary electrophoresis with chemiluminescence detection, *J. Chromatogr. A*, 2006, **1107**, 290-293.
- 9. Y. Nojavan, M. Kamankesh, F. Shahraz, M. Hashemi and A. Mohammadi, Ion pairbased dispersive liquid–liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs, *Talanta*, 2015, **137**, 31-37.
- 10. N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S. Leonardi, G. Neri and C. Sekar, Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode, *J. Electroanal. Chem.*, 2016, **770**, 23-32.
- 11. M. Mollaei, S. M. Ghoreishi and A. Khoobi, Electrochemical investigation of a novel surfactant for sensitive detection of folic acid in pharmaceutical and biological samples by multivariate optimization, *Measurement*, 2019, **145**, 300-310.
- 12. E. Senthilkumar, A. M. Shanmugharaj, R. Suresh Babu, G. Sivagaami Sundari, K. Thileep Kumar, S. Raghu and R. Kalaivani, Development of constructed nanoporous graphene-modified electrode for electrical detection of folic acid, *J. Mater. Sci. Mater. Electron.*, 2019, **30**, 13488-13496.
- 13. D. Zhang, X. Ouyang, W. Ma, L. Li and Y. Zhang, Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode, *Electroanalysis*, 2016, **28**, 312-319.
- 14. T. Jamali, H. Karimi-Maleh and M. A. Khalilzadeh, A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples, *LWT - Food Sci. Technol.*, 2014, **57**, 679-685.

15. X. Wang, Z. You, Y. Cheng, H. Sha, G. Li, H. Zhu and W. Sun, Application of nanosized gold and graphene modified carbon ionic liquid electrode for the sensitive electrochemical determination of folic acid, *J. Mol. Liq.*, 2015, **204**, 112-117.