Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

In-situ construction of α -MoC/g-C₃N₄ Mott-Schottky heterojunction for

efficient photocatalytic H₂ evolution

Jianfei Du ^{a#}, Yongli Shen ^{b#}, Fan Yang ^{a*}, Bo Zhang ^a, Xinzhi Jiang ^a, Changhua An ^{a,} ^{b\$}, Jinhua Ye^{c, d, e}

^a Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

^b Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute of New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

^c TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China

^d Photocatalytic materials group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^e Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814, Japan

Jianfei Du[#] and Yongli Shen[#] contributed equally to this work.

^{*} Corresponding Author. E-mail: fanyang@email.tjut.edu.cn

[§] Corresponding Author. E-mail: anchua@ustc.edu

Contents

Fig.S1. XRD patterns of 3atz, HAM, m-3atz/HAM, and Mo-3atzS-4
Fig.S2. FT-IR spectra of HAM, 3atz, and Mo-3atzS-5
Fig.S3. SEM images of Mo-3atzS-6
Fig. S4. SEM images of Mo-3atz synthesized under 70 °C (a, b), and as-prepared α -
MoC (c, d)S-7
Fig. S5. XRD pattern of Mo-3atz calcined under Ar atmosphereS-8
Fig.S6. XRD patterns of Mo-3atz precursor calcined under various temperaturesS-9
Fig.S7. XRD patterns of samples synthesized using other ligandsS-10
Fig.S8. N ₂ adsorption-desorption isotherms of of CN and MC-15/CNS-11
Fig.S9. The high-resolution O 1s spectrum of of α-MoCS-12
Fig.S10. XRD patterns of MC-15/CN photocatalyst before and after the recycle test
S-13
Fig.S11. HRTEM image and (b) EDS element mapping of MC-15/CN photocatalyst
after the recycle testS-14
Fig.S12. LSV (a) and Tafel (b) curves of CN, MC-15/CN and MCS-15
Fig.S13. The models of H* adsorption sites on the surface of $g-C_3N_4$: (a) C site, and
(b) N siteS-16
Fig.S14. The models of H* adsorption sites of on the surface of α -MoC (α -MoC/g-
C_3N_4): (a) C_1 site, (b) Mo_1 site, (c) Mo_2 site, (d) Mo_3 site, and (e) Mo_4 siteS-17
Table S1. Comparison of the synthesis temperature and size of molybdenum carbide
from literaturesS-18

Table S2. Comparison of various cocatalysts coupled with g-C ₃ N ₄ photocatalyst for				
olar H ₂ evolution from literaturesS-19				
Table S3. Kinetic analysis of emission decay of $g-C_3N_4$ and composite photocatalysts				
Table S4. The ΔG_{H^*} values of all the adsorption modelsS-21				

Fig. S1. XRD patterns of 3atz, HAM, m-3atz/HAM, and Mo-3atz.

Fig. S2. FT-IR spectra of HAM, 3atz, and Mo-3atz.

Fig. S3. SEM images of Mo-3atz synthesized in room temperature.

Fig. S4. SEM images of Mo-3atz synthesized under 70 °C (a, b), and as-prepared $\alpha-MoC$ (c, d)

Fig. S5. XRD pattern of Mo-3atz calcined under Ar atmosphere.

Fig. S6. XRD patterns of Mo-3atz precursor calcined under various temperatures.

Fig. S7. XRD patterns of samples synthesized using other ligands.

Fig. S8. N₂ adsorption-desorption isotherms of CN and MC-15/CN.

Fig. S9. The high-resolution O 1s spectrum of of α -MoC.

Fig. S10. XRD patterns of MC-15/CN photocatalyst before and after the recycle test.

Fig. S11. (a) HRTEM image and (b) EDS element mapping of MC-15/CN photocatalyst after the recycle test.

Fig. S12. LSV (a) and Tafel (b) curves of CN, MC-15/CN and MC.

Fig. S13. The models of H* adsorption sites on the surface of $g-C_3N_4$: (a) C site, and (b) N site.

Fig. S14. The models of H* adsorption sites of on the surface of α -MoC (α -MoC/g-C₃N₄): (a) C₁ site, (b) Mo₁ site, (c) Mo₂ site, (d)Mo₃ site, and (e) Mo₄ site.

Material	Synthesis temperature (°C)	Atmosphere	Size (nm)	Reference
MoC	1000	Ar	~5	1
Mo _x C	1000	Ar	8.9 ± 3.4	2
C-Mo _x C	900	N_2	1-3 (ball mill)	3
Mo ₂ C	800	Ar	14.9	4
Mo ₂ C	800	Ar	~8.5	5
MoC	800	NH ₃	7	6
MoC	800	N_2	~5	7
Mo ₂ C@C	800	Inert	~5	8
Mo ₂ C	800	Ar	~4	9
Mo ₂ C	800	Ar	3-5	10
Mo ₂ C	750	Ar	~3	11
α-ΜοC	720	CH_4/H_2	~10	12
α-ΜοC	700	$NH_3, CH_4/H_2$	5-10	13
α-ΜοC	700	$NH_3, CH_4/H_2$	2-5	14
MoC-QDs/C	700	Ar	2-5	15
Mo ₂ C	675	Ar	6.8 ± 1.3	16
α-ΜοϹ	450-550	H ₂ /Ar	~1.8	This work

Table S1. Comparison of the synthesis temperature and size of molybdenum carbide from literatures.

			H ₂ evolution	
Photocatalyst	Sacrificial	Light source	rate	Ref
	agent		(µmol h ⁻¹ g ⁻¹)	
		300 W		
$Mo_2C/g-C_3N_4$	TEOA	Xe lamp	60.9	17
		$(\lambda > 420 \text{ nm})$		
		300 W		
2.0wt.% Mo-Mo ₂ C/g-C ₃ N ₄	TEOA	Xe lamp	219	17
2 8 3 1		$(\lambda > 420 \text{ nm})$		
		300 W		
MoC-Li/g-C-N	ΤΕΟΛ	Xe lamn	130	Q
1000-L1/g-0314	ILOA	$(\lambda > 420 \text{ nm})$	150	5
		300W		
$CN-1M (Mo_2C/g-C_2N_4)$	TEOA	Xe lamp	507	18
01(11020/g 031(4)	ilon	$(\lambda > 420 \text{ nm})$		
		300 W		
$MoSe_2/g-C_3N_4$	TEOA	Xe lamp	136.8	19
		$(\lambda > 420 \text{ nm})$		
		300 W		
WC/g-C ₃ N ₄	TEOA	Xe lamp	146.1	20
		$(\lambda > 420 \text{ nm})$		
		300 W		
$WS_2/g-C_3N_4$	TEOA	Xe lamp	154	21
		(1.5 W cm^{-2})		
		300 W		
$Ni_2P/g-C_3N_4$	TEOA	Xe lamp	82.5	22
		$(\lambda > 420 \text{ nm})$		
		300 W		
2% MWNTS/g-C ₃ N ₄	Methanol	Xe lamp	75.8	23
		$(\lambda > 400 \text{ nm})$		
		300 W	400	
MC-15/CN	TEOA	Xe lamp	180	This
		$(\lambda > 400 \text{ nm})$		work

Table S2. Comparison of various cocatalysts coupled with $g-C_3N_4$ photocatalyst for solar H_2 evolution from literatures.

Samples	Decay life time (ns)		Fractional		\mathbf{V}^{2}	Average		
			contribution			Λ^2	lifetime	
	$ au_1$	τ_2	τ_3	\mathbf{f}_1	\mathbf{f}_2	f_3		(ns)
CN	0.95	3.37	13.38	32.5	46.2	21.3	1.15	4.71
MC-6/CN	0.94	3.58	14.70	31.6	49.1	19.2	1.15	4.88
MC-9/CN	1.20	4.09	15.61	33.0	49.7	17.3	1.11	5.13
MC-12/CN	1.27	4.24	15.37	36.3	45.5	18.2	1.30	5.19
MC-15/CN	1.37	4.39	16.39	33.5	50.7	15.8	1.19	5.27
MC-18/CN	1.33	4.30	15.70	40.2	44.9	15.0	1.26	4.80

Table S3. Kinetic analysis of emission decay of g- C_3N_4 and composite photocatalysts.

Models	Adsorption site (Model)	$\Delta G_{H^*}(eV)$	
g-C ₃ N ₄	C (S8.a)	-0.2301	
	N (S8.b)	1.7146	
α -MoC/g-C ₃ N ₄	C ₁ (S9.a)	-0.0443	
	Mo ₁ (S9.b)	-0.0751	
	Mo ₂ (S9.c)	-0.9347	
	Mo ₃ (S9.d)	-0.3280	
	Mo ₄ (S9.e)	0.3858	

Table S4. The ΔG_{H^*} values of all the adsorption models.

Supplementary References

- H. Shi, Z. Sun, W. Lv, S. Wang, Y. Shi, Y. Zhang, S. Xiao, H. Yang, Q.-H. Yang and F. Li, Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li–S batteries with high sulfur loading, *J. Mater. Chem. A.*, 2019, 7, 11298-11304.
- Y. Liu, X. Zhu, Q. Zhang, T. Tang, Y. Zhang, L. Gu, Y. Li, J. Bao, Z. Dai and J.S. Hu, Engineering Mo/Mo₂C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction, *J. Mater. Chem. A.*, 2020, 8, 8920-8926.
- 3 Z. Yan, G. He, P. K. Shen, Z. Luo, J. Xie and M. Chen, MoC-graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction, *J. Mater. Chem. A.*, 2014, **2**, 4014.
- 4 M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna and X. Lu, Ni strongly coupled with Mo₂C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting, *Adv. Energy Mater.*, 2019, 9, 1803185.
- 5 Y. Y. Chen, Y. Zhang, W. J. Jiang, X. Zhang, Z. Dai, L. J. Wan and J. S. Hu, Pomegranate-like N,P-doped Mo₂C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution, ACS Nano, 2016, 10, 8851-8860.
- 6 H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang and H. Fu, Holey reduced graphene oxide coupled with an Mo₂N-Mo₂C heterojunction for efficient hydrogen evolution, *Adv. Mater.*, 2018, **30**, 1704156.
- Y. Liu, Y. Zhang, Y. Zhang, Q. Zhang, X. Gao, X. Dou, H. Zhu, X. Yuan and L.Pan, MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through

electrodes for highly efficient pseudocapacitive deionization, *J. Mater. Chem. A.*, 2020, **8**, 1443-1450.

- 8 J. Liu, P. Wang, J. Fan, H. Yu and J. Yu, Hetero-phase MoC-Mo₂C nanoparticles for enhanced photocatalytic H₂-production activity of TiO₂, *Nano Res.*, 2020, 14, 1095-1102.
- 9 F. Yang, D. Liu, Y. Li, L. Cheng and J. Ye, Lithium incorporation assisted synthesis of ultra-small Mo₂C nanodots as efficient photocatalytic H₂ evolution cocatalysts, *Chem. Eng. J.*, 2020, **399**, 125794.
- 10 Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, Coupling Mo₂C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites, *Angew. Chem. Int. Ed.*, 2015, **54**, 10752-10757.
- Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong and Y. Li, Mo₂C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution, *ACS Nano*, 2016, 10, 11337-11343.
- 12 X. Li, J. Zhang, R. Wang, H. Huang, C. Xie, Z. Li, J. Li and C. Niu, In situ synthesis of carbon nanotube hybrids with alternate MoC and MoS₂ to enhance the electrochemical activities of MoS₂, *Nano Lett.*, 2015, **15**, 5268-5272.
- L. Lin, Q. Yu, M. Peng, A. Li, S. Yao, S. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X. Han, Y. W. Li, X. D. Wen, W. Zhou and D. Ma, Atomically dispersed Ni/alpha-MoC catalyst for hydrogen production from methanol/water, *J. Am. Chem. Soc.*, 2021, 143, 309-317.

- 14 Y. Deng, R. Gao, L. Lin, T. Liu, X. D. Wen, S. Wang and D. Ma, Solvent tunes the selectivity of hydrogenation reaction over alpha-MoC catalyst, *J. Am. Chem. Soc.*, 2018, **140**, 14481-14489.
- 15 F. Gao, Y. Zhao, L. Zhang, B. Wang, Y. Wang, X. Huang, K. Wang, W. Feng and P. Liu, Well dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H₂ evolution, *J. Mater. Chem. A.*, 2018, 6, 18979-18986.
- 16 C. Wan, N. A. Knight and B. M. Leonard, Crystal structure and morphology control of molybdenum carbide nanomaterials synthesized from an amine-metal oxide composite, *Chem Commun (Camb)*, 2013, **49**, 10409-10411.
- J. Dong, Y. Shi, C. Huang, Q. Wu, T. Zeng and W. Yao, A new and stable Mo-Mo₂C modified g-C₃N₄ photocatalyst for efficient visible light photocatalytic H₂ production, *Appl. Catal. B Environ.*, 2019, 243, 27-35.
- 18 J. Zhang, M. Wu, B. He, R. Wang, H. Wang and Y. Gong, Facile synthesis of rod-like g-C₃N₄ by decorating Mo₂C co-catalyst for enhanced visible-light photocatalytic activity, *Appl. Surf. Sci.*, 2019, **470**, 565-572.
- 19 D. Zeng, P. Wu, W.-J. Ong, B. Tang, M. Wu, H. Zheng, Y. Chen and D.-L. Peng, Construction of network-like and flower-like 2H-MoSe₂ nanostructures coupled with porous g-C₃N₄ for noble-metal-free photocatalytic H₂ evolution under visible light, *Appl. Catal. B Environ.*, 2018, 233, 26-34.
- 20 K. He, J. Xie, Z. Yang, R. Shen, Y. Fang, S. Ma, X. Chen and X. Li, Earthabundant WC nanoparticles as an active noble-metal-free co-catalyst for the

highly boosted photocatalytic H_2 production over $g-C_3N_4$ nanosheets under visible light, *Catal. Sci. Technol.*, 2017, 7, 1193-1202.

- Y. Zhou, X. Ye and D. Lin, One-pot synthesis of non-noble metal WS₂/g-C₃N₄ photocatalysts with enhanced photocatalytic hydrogen production, *Int. J. Hydrogen Energy*, 2019, 44, 14927-14937.
- 22 P. Ye, X. Liu, J. Iocozzia, Y. Yuan, L. Gu, G. Xu and Z. Lin, A highly stable non-noble metal Ni₂P co-catalyst for increased H₂ generation by g-C₃N₄ under visible light irradiation, *J. Mater. Chem. A.*, 2017, 5, 8493-8498.
- 23 L. Ge and C. Han, Synthesis of MWNTs/g-C₃N₄ composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity, *Appl. Catal. B Environ.*, 2012, **117-118**, 268-274.