[ASr₄Cl][Ge₃S₁₀] (A=Na, K) and [KBa₄Cl][Ge₃S₁₀]: New saltinclusion infrared nonlinear optical crystals with zerodimensional [Ge₃S₉] clusters

Yufei Song, ^a Shaoxin Cui, ^a Zhen Qian, ^a Hongwei Yu, ^a Zhanggui Hu, ^a Jiyang Wang, ^a Yicheng Wu ^a and Hongping Wu*a

Correspondence: Hongping Wu (wuhp@ms.xjb.ac.cn)

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

CONTENTS

1. Table S1. Crystal data	2
2. Table S2. Atomic coordinates, displacement parameters and BVSs	3
3. Table S3. Selected distances and angles	4
4. Table S4. Dimensional distribution	10
5. Table S5. Magnitude of Dipole Moments	11
6. Fig. S1. Experimental and calculated powder X-ray diffraction data	12
7. Fig. S2. EDS spectra	13
8. Fig. S3. IR spectra	14
9. Fig. S4. Coordination environment of cations	15
10. Fig. S5. Raman spectra	16
11. Fig. S6. Experimented birefringence	17
12. Fig. S7. Calculated birefringence	18
13. Fig. S8. Calculated band structure	19
14. Fig. S9. Projected density of states	20
15. References	21

Empirical formula	NaSr ₄ ClGe ₃ S ₁₀	KSr ₄ ClGe ₃ S ₁₀	KBa ₄ ClGe ₃ S ₁₀
Formula weight	947.29	963.40	1162.28
Temperature (K)		273(2)	
Crystal system		Hexagonal	
Space group		$P6_3$	
<i>a</i> (Å)	9.578(4)	9.713(9)	9.922(6)
<i>c</i> (Å)	11.830(6)	11.937(16)	12.205(13)
Volume(Å ³)	939.8(8)	975.5(2)	1040.7(17)
Ζ		2	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	3.347	3.280	3.709
μ (mm ⁻¹)	17.246	16.810	13.027
F(000)	872	888	1032
Completeness to theta	99.7%	100%	99.8%
GOF on F ²	1.077	1.063	1.063
$R_1, wR_2 (I \ge 2\sigma(I))^{[a]}$	0.0468, 0.1166	0.0446, 0.1075	0.0479, 0.1268
R_1 , wR_2 (all data)	0.0612, 0.1249	0.0700, 0.1195	0.0592, 0.1340
Flack x parameter	0.207 (0.022)	0.247 (0.016)	0.186 (0.030)
Largest diff. peak and hole (eÅ-	0.886 and -	0.796 and -	1.854 and -
3)	1.544	1.339	1.436

Table S1. Crystal data and structure refinement for $[NaSr_4Cl][Ge_3S_{10}]$, $[KSr_4Cl][Ge_3S_{10}]$, and $[KBa_4Cl][Ge_3S_{10}]$.

^[a] $R_1 = S||F_o| - |F_c||/S|F_o|$ and $wR_2 = [Sw(F_o^2 - F_c^2)^2 / Sw F_o^4]^{1/2}$ for $F_o^2 > 2s(F_o^2)$

Atom	x/a	y/b	z/c	U(eq)	BVS
Na1	0	0	0.3943(18)	0.049(4)	0.93
Sr1	0.33333	0.6667	0.3295(3)	0.0165(7)	2.37
Sr2	0.0869(3)	0.3401(3)	0.6507(3)	0.0476(7)	1.87
Ge1	0.4479(2)	0.3356(2)	0.49056(15)	0.0160(5)	4.21
S 1	0.33333	0.6667	0.5869(8)	0.024(2)	2.09
S2	0.4435(7)	0.1128(6)	0.4278(5)	0.0253(12)	1.82
S3	0.2510(6)	0.3237(6)	0.3907(5)	0.0220(11)	2.09
S4	0.4240(7)	0.3484(8)	0.6710(5)	0.0334(14)	2.01
Cl1	0	0	0.6400(9)	0.029(2)	1.20

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²), bond valence sums (BVSs) for [NaSr₄Cl][Ge₃S₁₀], [KSr₄Cl][Ge₃S₁₀], and [KBa₄Cl][Ge₃S₁₀].

KSr₄ClGe₃S₁₀

NaSr₄ClGe₃S₁₀

Atom	x/a	y/b	z/c	U(eq)	BVS
K1	0	0	0.6018(6)	0.0403(16)	1.07
Sr1	0.666667	0.333333	0.67099(19)	0.0195(5)	2.44
Sr2	0.3449(2)	0.2558(2)	0.3447(2)	0.0504(6)	1.70
Gel	0.34283(17)	0.88912(16)	0.50620(11)	0.0203(4)	4.20
S 1	0.3513(6)	0.9234(5)	0.3279(3)	0.0354(11)	1.79
S2	0.3390(5)	0.0754(5)	0.6044(4)	0.0383(11)	2.07
S3	0.1202(5)	0.6767(5)	0.5690(4)	0.0294(9)	2.01
S4	0.666667	0.333333	0.4123(7)	0.0333(16)	1.68
Cl1	0	0	0.3545(7)	0.0360(16)	1.14

KBa₄ClGe₃S₁₀

Atom	x/a	y/b	z/c	U(eq)	BVS
K1	0	0	0.3996(17)	0.063(4)	1.03
Bal	0.3333	0.6667	0.3357(2)	0.0192(7)	2.36
Ba2	0.6599(2)	0.7439(2)	0.6556(2)	0.0436(6)	1.79
Gel	0.4534(3)	0.3361(3)	0.49215(19)	0.0189(7)	4.15
S 1	0.6692(8)	0.5474(8)	0.4292(5)	0.0233(16)	1.98
S 2	0.3333	0.6667	0.5927(9)	0.025(3)	1.8
S 3	0.2617(9)	0.3295(9)	0.4010(6)	0.0280(18)	1.93
S4	0.4268(8)	0.3404(9)	0.6666(6)	0.0304(18)	1.94
Cl1	0	0	0.6483(13)	0.031(3)	1.20

Table S3. Selected distances (Å) and angles (°) for $[NaSr_4Cl][Ge_3S_{10}]$, $[KSr_4Cl][Ge_3S_{10}]$, and $[KBa_4Cl][Ge_3S_{10}]$.

Atom-Atom	Length [Å]	S2#1-Sr2-S4#5	66.90(15)
Sr1-S4#12	3.045(6)	Cl1-Sr2-S3	78.2(2)
Sr1-S4#8	3.045(6)	S4-Sr2-S3	66.17(14)
Sr1-S3	3.057(5)	S4#5-Sr2-S3	117.88(15)
Sr1-S3#2	3.057(5)	Cl1-Sr2-S4#1	68.92(10)
Ge1-S4	2.157(6)	S4-Sr2-S4#1	143.26(17)
Ge1-S2	2.240(5)	S4#5-Sr2-S4#1	72.98(18)
Sr2-S1	2.922(4)	S1-Sr2-S3	71.34(19)
Sr2-S3#11	3.134(6)	S3#15-Sr2-S3	162.65(17)
Sr2-S2#1	3.232(7)	S2#1-Sr2-S3	63.50(14)
Sr2-S3	3.493(6)	S1-Sr2-S4#1	142.37(13)
S3-Na1	2.818(5)	S3#15-Sr2-S4#1	61.22(13)
Sr1-S4#10	3.045(6)	S2#1-Sr2-S4#1	65.14(13)
Sr1-S1	3.046(10)	S3-Sr2-S4#1	114.26(14)
Sr1-S3#3	3.057(5)	S3#4-Na1-Cl1#8	89.1(4)
Ge1-S3	2.179(5)	S3#4-Na1-S3	119.98(2)
Ge1-S2#4	2.245(6)	S3#4-Na1-Cl1	90.9(4)
Sr2-Cl1	2.935(3)	S3#1-Na1-Cl1#8	89.1(4)
Sr2-S4	3.199(6)	S3-Na1-Cl1#8	89.1(4)
Sr2-S4#3	3.331(7)	S2#1-Sr2-S4#5	66.90(15)
Sr2-S4#1	3.647(7)	S3#1-Na1-S3	119.98(2)
Na1-Cl1	2.910(2)	Cl1-Na1-Cl1#8	180
Atom-Atom-Atom	Angle [°]	S4#1-Sr2-S4#5	72.93(17)
S4-Ge1-S3	115.2(2)	S4-Ge1-S2	115.5(2)
S3-Ge1-S2	99.6(2)	S4-Ge1-S2#6	110.5(2)
S3-Ge1-S2#6	104.8(2)	S2-Ge1-S2#6	110.3(3)
S1-Sr2-Cl1	143.70(16)	S1-Sr2-S3#15	123.2(2)
Cl1-Sr2-S3#15	84.7(2)	S1-Sr2-S4	74.19(13)
Cl1-Sr2-S4	75.71(13)	S3#15-Sr2-S4	106.69(16)
S1-Sr2-S2#1	88.26(19)	Cl1-Sr2-S2#1	95.6(2)
S3#15-Sr2-S2#1	122.04(15)	S4-Sr2-S2#1	129.63(17)
S1-Sr2-S4#5	72.19(11)	C11-Sr2-S4#5	141.89(13)
S4-Ge1-S3	115.2(2)	S3#1-Na1-Cl1	90.9(4)
S4-Ge1-S2	115.5(2)	S3-Na1-Cl1	90.9(4)

Symmetry transformations used to generate equivalent atoms:

#1 -y+1, x-y, z	#2 -x+y+1, -x+1, z	#3 -x+y+1, -x+2, z	#4 -x+y+2, -x+2, z
#5 -x+1, -y+1, z+1/2	#6 -x+2, -y+1, z+1/2	#7 -x+2, -y+2, z-1/2	#8 y, -x+y, z+1/2
#9 y, -x+y+1, z-1/2	#10 y, -x+y+1, z+1/2	#11 x-y, x-1, z+1/2	#12 x-y+1, x, z+1/2

KSr4ClGe3S10

_

Atom-Atom	Length [Å]	S2#16-Sr2-S2	165.37(15)
Sr1-S2#2	3.011(4)	S2#3-Sr1-S2#6	113.30(9)
Sr1-S2	3.011(4)	S2#6-Sr1-S2	113.30(9)
Sr1-S1#11	3.053(4)	S2#6-Sr1-S1#15	82.95(13)
Sr1-S4	3.089(9)	S2#3-Sr1-S1#14	82.95(14)
Ge1-S1	2.150(4)	S2-Sr1-S1#14	156.37(14)
Ge1-S3	2.244(4)	S2#3-Sr1-S1#10	72.07(12)
Sr2-S4	2.938(3)	S2-Sr1-S1#10	82.95(14)
Sr2-S2#13	3.185(6)	S1#14-Sr1-S1#10	86.31(13)
Sr2-S3#1	3.304(5)	S2#6-Sr1-S4	74.70(11)
Sr2-S2	3.548(6)	S1#15-Sr1-S4	127.84(9)
K1-S2	2.995(4)	S1#10-Sr1-S4	127.83(9)
K1-S2#1	2.995(4)	S1-Ge1-S3	114.70(17)
Sr1-S2#2	3.011(4)	S2#3-Sr1-S1#15	156.36(14)
Sr1-S2#5	3.011(4)	S2-Sr1-S1#15	72.07(12)
Sr1-S1#12	3.053(4)	S2#6-Sr1-S1#14	72.07(12)
Sr1-S1#8	3.053(4)	S1#15-Sr1-S1#14	86.31(13)
Sr1-S2#5	3.011(4)	S2#6-Sr1-S1#10	156.37(14)
Ge1-S2	2.172(4)	S1#15-Sr1-S1#10	86.31(13)
Ge1-S3#4	2.251(4)	S2#3-Sr1-S4	74.70(11)
Sr2-Cl1	3.015(19)	S2-Sr1-S4	74.70(11)
Sr2-S1	3.267(5)	S1#14-Sr1-S4	127.83(9)
Sr2-S1#5	3.325(5)	S1-Ge1-S2	114.89(19)
K1-Cl1	2.952(12)	S2-Ge1-S3	100.12(18)
K1-S2#3	2.995(4)	S2-Ge1-S3#5	104.70(17)
K1-Cl1#6	3.016(12)	S4-Sr2-Cl1	143.32(13)
Atom–Atom–Atom	Angle [°]	S1#6-Sr2-S2	117.22(11)
S1-Ge1-S3#5	111.80(17)	Cl1-Sr2-S2#16	85.97(17)
S3-Ge1-S3#5	109.6(2)	Cl1-Sr2-S1	75.52(9)
S4-Sr2-S2#16	123.32(18)	S4-Sr2-S3#1	89.37(16)
S4-Sr2-S1	74.14(10)	S2#16-Sr2-S3#1	119.84(11)
S2#16-Sr2-S1	108.97(12)	S4-Sr2-S1#6	73.26(9)
Cl1-Sr2-S3#1	94.15(15)	S2#16-Sr2-S1#6	76.16(12)
S1-Sr2-S3#1	129.27(13)	S3#1-Sr2-S1#6	66.70(11)
Cl1-Sr2-S1#6	140.79(10)	Cl1-Sr2-S2	79.75(16)
S1-Sr2-S1#6	143.25(14)	S1-Sr2-S2	64.47(10)

Symmetry transformations used to generate equivalent atoms:

-y, x-y, z	#2	-y, x-y-1, z	#3	-y+1, x-y, z	#4	-x+y, -x, z
-x+y+1, -x, z	#6	-x+y+1, -x+1, z	#7	-x, -y, z+1/2	#8	-x, -y, z-1/2
-x+1, -y, z-1/2	#10	-x+1, -y, z+1/2	#11	-x+1, -y+1, z-1/2	#12	-x+1, -y+1, z+1/2
y, -x+y, z+1/2	#14	y+1, -x+y+1, z+1/2	#15	x-y, x, z+1/2	#16	x-y, x, z-1/2
x-y+1, x, z+1/2						
	-y, x-y, z -x+y+1, -x, z -x+1, -y, z-1/2 y, -x+y, z+1/2 x-y+1, x, z+1/2	-y, x-y, z #2 -x+y+1, -x, z #6 -x+1, -y, z-1/2 #10 y, -x+y, z+1/2 #14 x-y+1, x, z+1/2	-y, x-y, z #2 -y, x-y-1, z -x+y+1, -x, z #6 -x+y+1, -x+1, z -x+1, -y, z-1/2 #10 -x+1, -y, z+1/2 y, -x+y, z+1/2 #14 y+1, -x+y+1, z+1/2 x-y+1, x, z+1/2	-y, x-y, z #2 -y, x-y-1, z #3 -x+y+1, -x, z #6 -x+y+1, -x+1, z #7 -x+1, -y, z-1/2 #10 -x+1, -y, z+1/2 #11 y, -x+y, z+1/2 #14 y+1, -x+y+1, z+1/2 #15 x-y+1, x, z+1/2	-y, x-y, z#2-y, x-y-1, z#3-y+1, x-y, z-x+y+1, -x, z#6-x+y+1, -x+1, z#7-x, -y, z+1/2-x+1, -y, z-1/2#10-x+1, -y, z+1/2#11-x+1, -y+1, z-1/2y, -x+y, z+1/2#14y+1, -x+y+1, z+1/2#15x-y, x, z+1/2x-y+1, x, z+1/2x-y+1, x, z+1/2x-y+1, x, z+1/2x-y+1, x, z+1/2	-y, x-y, z#2-y, x-y-1, z#3-y+1, x-y, z#4-x+y+1, -x, z#6-x+y+1, -x+1, z#7-x, -y, z+1/2#8-x+1, -y, z-1/2#10-x+1, -y, z+1/2#11-x+1, -y+1, z-1/2#12y, -x+y, z+1/2#14y+1, -x+y+1, z+1/2#15x-y, x, z+1/2#16x-y+1, x, z+1/2x-y+1, x, z+1/2x-y+1, x, z+1/2x-y+1, x, z+1/2x-y+1, z+1/2

KBa₄ClGe₃S₁₀

Atom-Atom	Length [Å]	S(4)-Ge(1)-S(1)#1	114.4(3)	_
Ge(1)-S(4)	2.149(8)	S(3)-Ge(1)-S(1)#1	101.9(3)	
Ge(1)-S(3)	2.176(7)	S(1)-Ge(1)-S(1)#1	108.3(4)	
Ge(1)-S(1)	2.254(8)	S(3)-K(1)-Cl(1)	89.7(4)	
Ge(1)-S(1)#1	2.257(7)	S(3)#8-K(1)-Cl(1)	89.7(4)	
S(1)-Ba(2)#2	3.410(7)	S(3)#6-K(1)-Cl(1)	89.7(4)	
S(2)-Ba(2)#3	3.032(4)	S(3)-K(1)-Cl(1)#5	90.3(4)	
S(2)-Ba(2)	3.032(4)	S(3)#8-K(1)-Cl(1)#5	90.3(4)	
S(2)-Ba(2)#4	3.032(4)	S(3)#6-K(1)-Cl(1)#5	90.3(4)	
S(2)-Ba(1)	3.137(11)	Cl(1)-K(1)-Cl(1)#5	180.0	
S(3)-K(1)	2.991(8)	S(2)-Ba(1)-S(3)#14	75.37(15)	
S(3)-Ba(1)#2	3.155(8)	S(2)-Ba(1)-S(3)#8	75.37(15)	
S(3)-Ba(2)#5	3.266(8)	S(3)#14-Ba(1)-S(3)#8	113.85(12)	
S(3)-Ba(2)#6	3.601(8)	S(2)-Ba(1)-S(3)#15	75.37(15)	
S(4)-Ba(1)#7	3.178(7)	S(3)#14-Ba(1)-S(3)#15	113.85(12)	
S(4)-Ba(2)#6	3.403(7)	S(3)#8-Ba(1)-S(3)#15	113.85(12)	
S(4)-Ba(2)#2	3.483(8)	S(2)-Ba(1)-S(4)#16	130.51(14)	
S(4)-Ba(2)#8	3.673(8)	S(3)#14-Ba(1)-S(4)#16	85.1(2)	
K(1)-Cl(1)	3.03(3)	S(3)#8-Ba(1)-S(4)#16	152.6(2)	
K(1)-Cl(1)#5	3.07(3)	S(3)#15-Ba(1)-S(4)#16	71.90(19)	
K(1)-Ba(2)#9	4.259(15)	S(2)-Ba(1)-S(4)#17	130.51(14)	
K(1)-Ba(2)#10	4.259(15)	S(3)#14-Ba(1)-S(4)#17	71.90(19)	
K(1)-Ba(2)#5	4.259(15)	S(3)#8-Ba(1)-S(4)#17	85.1(2)	
K(1)-Ba(2)	4.363(15)	S(3)#15-Ba(1)-S(4)#17	152.6(2)	
K(1)-Ba(2)#6	4.363(15)	S(4)#16-Ba(1)-S(4)#17	82.4(2)	
K(1)-Ba(2)#8	4.363(15)	S(2)-Ba(1)-S(4)#5	130.51(14)	
Ba(1)-Ba(2)#11	4.659(2)	S(3)#14-Ba(1)-S(4)#5	152.6(2)	
Ba(1)-Ba(2)#10	4.659(2)	S(3)#8-Ba(1)-S(4)#5	71.90(19)	
Ba(1)-Ba(2)#12	4.659(2)	S(3)#15-Ba(1)-S(4)#5	85.1(2)	
Cl(1)-Ba(2)	3.046(2)	S(4)#16-Ba(1)-S(4)#5	82.4(2)	
Cl(1)-Ba(2)#6	3.046(2)	S(4)#17-Ba(1)-S(4)#5	82.4(2)	
Cl(1)-Ba(2)#8	3.046(2)	S(2)-Ba(2)-Cl(1)	143.27(17)	
Atom–Atom–Atom	Angle [°]	S(3)-K(1)-S(3)#8	119.997(9)	
S(4)-Ge(1)-S(3)	113.1(3)	S(3)-K(1)-S(3)#6	119.996(9)	
S(4)-Ge(1)-S(1)	112.8(3)	S(3)#8-K(1)-S(3)#6	119.997(9)	
S(3)-Ge(1)-S(1)	105.2(3)	S(4)-Ge(1)-S(1)#1	114.4(3)	

S(2)-Ba(2)-S(3)#7	121.3(2)	Cl(1)-Ba(2)-S(1)#15	96.8(3)	_
Cl(1)-Ba(2)-S(3)#7	85.7(3)	S(3)#7-Ba(2)-S(1)#15	122.55(18)	
S(2)-Ba(2)-S(4)#8	74.20(14)	S(4)#8-Ba(2)-S(1)#15	128.07(19)	
Cl(1)-Ba(2)-S(4)#8	73.84(14)	S(2)-Ba(2)-S(4)#15	73.00(13)	
S(3)#7-Ba(2)-S(4)#8	107.81(19)	Cl(1)-Ba(2)-S(4)#15	141.45(13)	
S(2)-Ba(2)-S(1)#15	88.9(2)	S(3)#7-Ba(2)-S(4)#15	78.69(19)	
S(4)#8-Ba(2)-S(4)#15	144.5(2)	S(4)#15-Ba(2)-S(3)#8	117.37(18)	
S(1)#15-Ba(2)-S(4)#15	64.30(18)	S(2)-Ba(2)-S(4)#6	141.74(14)	
S(2)-Ba(2)-S(3)#8	70.3(2)	Cl(1)-Ba(2)-S(4)#6	69.93(12)	
Cl(1)-Ba(2)-S(3)#8	79.0(3)	S(3)#7-Ba(2)-S(4)#6	64.48(18)	
S(3)#7-Ba(2)-S(3)#8	163.5(2)	S(4)#8-Ba(2)-S(4)#6	143.35(19)	
S(4)#8-Ba(2)-S(3)#8	61.96(18)	S(1)#15-Ba(2)-S(4)#6	62.95(17)	
S(1)#15-Ba(2)-S(3)#8	66.11(16)	S(4)#15-Ba(2)-S(4)#6	71.5(2)	

Symmetry transformations used to generate equivalent atoms:

#1x-1, y-1, z+1	#2 x+1, y+1, z-1	#3 -y, x-y-1, z	#4 -y+1, x-y-1, z
#5 -y+1, x-y, z-1	#6 -y+2, x-y, z	#7 -x+y+1, -x, z	#8 -x+y+2, -x+1, z-1
#9 -x+y+2, -x+1, z	#10-x+y+2, -x+2, z-1	#11-x+2, -y, z-1/2	#12 -x+2, -y, z-1/2
#13 -x+2, -y+1, z-1/2	#14 -x+2, -y+1, z+1/2	#15y, -x+y, z+1/2	#16 y+1, -x+y+1, z-1/2
#17 y+1, -x+y+1, z+1/2	#18 y+2, -x+y+2, z-1/2	#19 x-y, x-1, z+1/2	#20 x-y, x, z-1/2
#21 x-y+1, x, z-1/2			

Compound	Anionic groups	Anionic group (M + N)/Q ^[b] dimensions		Law of dimensions	Ref.
$[Rb_4Cl][Cd_{11}In_9S_{26}]$	$\begin{array}{c} CdIn_{3}S_{10},\\ Cd_{3}InS_{10} \end{array}$	3D	0.77		1
$[K_4Cl][CdGa_9Q_{16}]$ $(Q = S, Se)$	$\begin{array}{c} Ga_4S_{10}\text{,}\\ Ga_3CdS_{10}\end{array}$	3D	0.625		2
$Ba_{3}AGa_{5}Se_{10}Cl_{2}$ (A = Cs, Rb, K)	GaSe ₄ , Ga ₄ Se ₁₀	3D	0.5		3
$\begin{array}{l} Ba_4MGa_4Se_{10}Cl_2 \ (M = \\ Zn, Cd, Mn, Cu/Ga) \end{array}$	MSe ₄ , Ga ₄ Se ₁₀	3D	0.5		4
$Li_2Cs_2Ga_3S_6Cl$	Ga ₃ S ₉	3D	0.5	(M + N)/O	5
$Cs_2[Mn_2Ga_3S_7Cl]$	Ga_3S_9 MnS_6	2D	0.71	≥ 0.5	6
$ABa_{2}Ga_{4}S_{8}Cl (A = Rb, Cs)$	Ga_4S_{10}	2D	0.5		7
$[ABr][Hg_3P_2S_8] (A = Rb, Cs; X = Cl, Br)$	HgS _{4,} HgPS ₄	2D	0.625		8, 10
$[A_3X][Ga_3PS_8] (A = K,Rb; X = Cl, Br)$	$GaPS_4$ Ga_3PS_{10}	2D	0.5		9, 10
NaGaS ₂ Cl	Ga ₄ Se ₁₀	2D	0.5		11
$Ba_7In_2Se_6F_8$	InS_4	1D	0.3		10
Ba ₃ GaS ₄ Cl	GaS_4	0D	0.25		12
$K_2Ba_3Ge_3S_9Cl_2$	Ge ₃ S ₉	0D	0.3		13
$Ba_3SnS_3F_2$	SnS_4	0D	0.33	$\frac{(M+N)}{2} \leq 0.33$	14
NaSr4ClGe3S10	Ge ₃ S ₉	0D	0.3		
KSr4ClGe3S10	Ge ₃ S ₉	0D	0.3		This work
KBa ₄ ClGe ₃ S ₁₀	Ge ₃ S ₉	0D	0.3		

Table S4. Dimensional distribution and arrangement pattern of $[M_x Q_y]$ units.

^[b] M = IIIA or IVA, N = IB or IIB or cations coordinated as $[M_xQ_y]$ anionic groups.

Crystals	Polyhedro n	x(a)	y(b)	z (c)	Dipole moment (D)	Dipole moment (×10 ⁻² esu·cm ² /Å ³)	
NaSr ₄ ClGe ₃ S ₁ 0	$Ge(1)S_4$	0.14	-1.48	-4.14	4.42		
	$Ge(1)S_4$	-1.62	-0.14	-4.14	4.42		
	$Ge(1)S_4$	1.48	1.62	-4.14	4.42	2.66	
	Ge ₃ S ₉	0	0	-12.43	12.43		
KSr ₄ ClGe ₃ S ₁₀	$Ge(1)S_4$	0.47	-1.34	4.13	4.44		
	$Ge(1)S_4$	1.34	1.83	4.13	4.44		
	$Ge(1)S_4$	-1.83	-0.47	4.13	4.44	2.54	
	Ge ₃ S ₉	0	0	12.39	12.39		
KBa4ClGe3S10	$Ge(1)S_4$	0.54	-1.36	-3.55	3.94		
	$Ge(1)S_4$	1.36	1.90	-3.55	3.94		
	$Ge(1)S_4$	-1.90	-0.54	-3.55	3.94	2.05	
	Ge ₃ S ₉	0	0	-10.65	10.65		

Table S5. Magnitude of Dipole Moments of $[NaSr_4Cl][Ge_3S_{10}]$, $[KSr_4Cl][Ge_3S_{10}]$, and $[KBa_4Cl][Ge_3S_{10}]$.

Fig. S1. Powder-XRD patterns of (a) $[NaSr_4Cl][Ge_3S_{10}]$, (b) $[KSr_4Cl][Ge_3S_{10}]$, and (c) $[KBa_4Cl][Ge_3S_{10}]$ from 650°C to 850°C.

Fig. S2. EDS of (a) [NaSr₄Cl][Ge₃S₁₀], (b) [KSr₄Cl][Ge₃S₁₀], (c) and [KBa₄Cl][Ge₃S₁₀].

Fig. S3. IR spectra of (a) $[NaSr_4Cl][Ge_3S_{10}]$, (b) $[KSr_4Cl][Ge_3S_{10}]$, and (c) $[KBa_4Cl][Ge_3S_{10}]$. (IR samples were polycrystalline samples that synthesized by high temperature solid phase method in 1123 K)

Fig. S4. Complete coordination environment of cations in [NaSr₄Cl][Ge₃S₁₀].

Fig. S6. Crystal for the birefringence determination and the interference colors observed in the cross-polarized light for (a) $[NaSr_4Cl][Ge_3S_{10}]$, (b) $[KSr_4Cl][Ge_3S_{10}]$, and (c) $[KBa_4Cl][Ge_3S_{10}]$; the crystal thicknesses for (d) $[NaSr_4Cl][Ge_3S_{10}]$, (e) $[KSr_4Cl][Ge_3S_{10}]$, and (f) $[KBa_4Cl][Ge_3S_{10}]$.

Fig. S7. Calculated birefringence (Δn) curves of (a) [NaSr₄Cl][Ge₃S₁₀], (b) [KSr₄Cl][Ge₃S₁₀], and (c) [KBa₄Cl][Ge₃S₁₀].

Fig. S8. Calculated band structure of (a) $[NaSr_4Cl][Ge_3S_{10}]$, (b) $[KSr_4Cl][Ge_3S_{10}]$, and (c) $[KBa_4Cl][Ge_3S_{10}]$.

Fig. S9. Projected density of states of (a) $[NaSr_4Cl][Ge_3S_{10}]$, (b) $[KSr_4Cl][Ge_3S_{10}]$, and (c) $[KBa_4Cl][Ge_3S_{10}]$.

References

1. S.-M. Pei, L.-T. Jiang, B.-W. Liu, G.-C. Guo, A new salt-inclusion chalcogenide exhibiting distinctive $[Cd_{11}In_9S_{26}]^{3-}$ host framework and decent nonlinear optical performances, *J. Alloys Compd.* 2022, **902**, 163656.

2. S.-M. Pei, B.-W. Liu, X.-M. Jiang, Y.-Q. Zou, W.-F. Chen, Q.-N. Yan, G.-C. Guo, Superior Infrared Nonlinear Optical Performance Achieved by Synergetic Functional Motif and Vacancy Site Modulations, *Chem. Mater.* 2021, **33**, 8831-8837.

3. P. Yu, L.J. Zhou, L. Chen, $Ba_3AGa_5Se_{10}Cl_2$ (A = Cs, Rb, K) Noncentrosymmetric inorganic openframework chalcohalides with strong middle IR SHG and red emission: $Ba_3AGa_5Se_{10}Cl_2$ (A = Cs, Rb, K), *J. Am. Chem. Soc.* 2012, **134**, 2227-2235.

4. Y.-Y. Li, P.-F. Liu, L. Hu, L. Chen, H. Lin, L.-J. Zhou, L.-M. Wu, Strong IR NLO Material Ba₄MGa₄Se₁₀Cl₂: Highly Improved Laser Damage Threshold via Dual Ion Substitution Synergy, *Adv. Opt. Mater.* 2015, **3**, 957-966.

5. B.W. Liu, X.M. Jiang, B.X. Li, H.Y. Zeng, G.C. Guo, Li[LiCs₂Cl][Ga₃S₆]: A Nanoporous Framework of GaS₄ Tetrahedra with Excellent Nonlinear Optical Performance, *Angew. Chem. Int. Ed.* 2020, **59**, 4856-4859.

6. Y.J. Zheng, Y.F. Shi, C.B. Tian, H. Lin, L.M. Wu, X.T. Wu, Q.L. Zhu, An unprecedented pentanary chalcohalide with Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties, *Chem. Commun.* 2018, **55**, 79-82.

7. B. W. Liu, X. M. Jiang, H. Y. Zeng and G. C. Guo, [ABa₂Cl][Ga4S₈] (A = Rb, Cs): Wide-Spectrum Nonlinear Optical Materials Obtained by Polycation-Substitution-Induced Nonlinear Optical (NLO)-Functional Motif Ordering, *J. Am. Chem. Soc.* 2020, **142**, 10641-10645.

8. W. Xing, C. Tang, N. Wang, C. Li, E. Uykur, J. Wu, Z. Lin, J. Yao, W. Yin and B. Kang, $AXHg_3P_2S_8$ (A = Rb, Cs; X = Cl, Br): New Excellent Infrared Nonlinear Optical Materials with Mixed-Anion Chalcohalide Groups of Trigonal Planar [HgS₂X]³⁻ and Tetrahedral [HgS₃X]⁵⁻, *Adv. Opt. Mater.* 2021, **9**, 2100563.

9. B. W. Liu, H. Y. Zeng, X. M. Jiang, G. E. Wang, S. F. Li, L. Xu and G. C. Guo, $[A_3X][Ga_3PS_8]$ (A = K, Rb; X = Cl, Br): promising IR non-linear optical materials exhibiting concurrently strong second-harmonic generation and high laser induced damage thresholds, *Chem. Sci.* 2016, **7**, 6273-6277.

10. Q. G. Yue, W. B. Wei, H. Chen, X. T. Wu, H. Lin and Q. L. Zhu, Salt-inclusion chalcogenides: an emerging class of IR nonlinear optical materials, *Dalton Trans*. 2020, **49**, 14338-14343.

11. X. Li, F. Liang, T. Liu and H. Li, Na₂GaS₂Cl: a new sodium-rich chalcohalide with two-dimensional [GaS₂] infinity layers and wide interlayer space, *Dalton Trans*. 2021, **50**, 11167-11172.

12. K. Feng, W. Yin, Z. Lin, J. Yao, Y. Wu, Five new chalcohalides, Ba_3GaS_4X (X = Cl, Br), Ba_3MSe_4Cl (M = Ga, In), and $Ba_7In_2Se_6F_8$: syntheses, crystal structures, and optical properties, *Inorg. Chem.* 2013, 55, 11503-11508.

13. W. Zhou, Z.-H. Shi, W. Liu, S.-P. Guo, Noncentrosymmetric chalcohalide K₂Ba₃Ge₃S₉Cl₂: A new nonlinear optical material with remarkable laser-induced damage threshold, *J. Alloys Compd.* 2022, **895**, 162602.

14. H. Kabbour, L. Cario, M. Danot, A. Meerschaut, Design of a new family of inorganic compounds $Ae_2F_2SnX_3$ (Ae= Sr, Ba; X= S, Se) using rock salt and fluorite 2D building blocks, *Inorg. Chem.* 2006, **45**, 917-922.