Supporting Information

Surface-halogen-introduced 2D NiCo bimetallic MOFs via modulation method for elevated electrochemical glucose sensing

Panpan Lia, Yang Bai*b,c, Guangxun Zhanga, Xiaotian Guod, Xiangren Mengd, Huan Pang*a

a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
b School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
c State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
d School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China

*Corresponding authors: huanpangchem@hotmail.com; panghuan@yzu.edu.cn
Experimental Section

Preparation of cuboid MOFs

4,4′-bipyridine (2 mmol, 0.31 g), NiSO₄·6H₂O (0.5 mmol, 0.13 g) and CoSO₄·7H₂O (1.5 mmol, 0.42 g) were added into a 50 mL Teflon-lined stainless autoclave. Water (15 mL) was then added and stirred under room temperature for 10 min. Then 7.5 mL EtOH was added into the clave and heated at 100 °C for 24 h. After cooling down to the room temperature, solid product was collected by centrifugation. The solid was then washed with ethanol (10 mL *3) and water (10 mL *3) dried at 50 °C under vacuum.

Preparation of 2D MOFs nanoplates

4,4′-bipyridine (2 mmol, 0.31 g), NiSO₄·6H₂O (0.5 mmol, 0.13 g) and CoSO₄·7H₂O (1.5 mmol, 0.42 g) were dissolved in 15 mL water and stirred at room temperature for 10 min, 4-bromopyridine (2.3 mmol, 0.5 g) or 4-iodopyridine (1.6 mmol, 0.5 g) was dissolved in 7.5 mL EtOH containing pyridine (12.4 mmol, 1.0 g), Then the solution was slowly added into the former solution under stirring, The clave was then sealed and heated at 100°C for 24 h. After cooling down to the room temperature, solid product was collected by centrifugation. The solid was then washed with ethanol (10 mL *3) and water (10 mL *3) dried at 50 °C under vacuum.

Characterization

The morphological features were characterized by field emission scanning electron microscopy (FESEM, Zeiss-Supra55), high resolution transmission electron microscopy (HRTEM, Tecnai G2 F30 S-TWIN), and energy dispersive X-ray spectrometry (EDS) mapping. X-ray diffraction (XRD) patterns were examined on a Bruker D8 Advanced X-
Ray Diffractometer (Cu-Kα radiation: λ = 0.15406 nm). The chemical states were measured using an Axis Ultra X-ray photoelectron spectroscope (XPS, Kratos Analytical Ltd., UK) equipped with a standard monochromatic Al-Kα source (hv = 1486.6 eV). Fourier transform infrared (FTIR) transmission spectra were obtained on a BRUKER-EQUINOX-55 IR spectrophotometer. N2 adsorption-desorption measurements were performed on Quantachrome Instruments, Autosorb IQ3.

Fabrication of working electrodes and electrochemical measurements

To fabricate the working electrodes, a mixture containing of the as-synthesized MOFs (3 mg), 5 wt% Nafion solution 25 µL, and 300 µL of water, 250 µL of ethanol was well mixed. Then the solution was ultrasonicated for one hour. 5 µL mixture was dripped on the surface of glassy carbon electrode and dried for two hours at room temperature.

Electrochemical measurements were conducted on a CHI660e electrochemical station (CH Instruments, Shanghai, China). A conventional three-electrode system was used for all electrochemical measurements, which consisted of a modified GCE electrode as the working electrode, an Ag/AgCl (saturated KCl) electrode as the reference electrode, and platinum foil as the auxiliary electrode in 0.1 M NaOH with the protection of N2.
Figure S1 SEM images of (a) NiCoB, (b) NiCoBP.
Figure S2 (a, b) Nitrogen adsorption-desorption isotherms of NiCoB and the corresponding pore size distribution at 77 K. (c, d) Nitrogen adsorption-desorption isotherms of NiCoBP and the corresponding pore size distribution at 77 K.
Figure S3 HAADF-STEM and elemental mappings of Ni-K, Co-k, C-K, N-K, O-K, S-K, and I-k in NiCoBP-I.
Figure S4 EDX spectrum and atomic content of each element of (a, b) NiCoBP-Br. (c, d) NiCoBP-I.
Figure S5 XPS survey spectra of (a) NiCoBP (b) NiCoBP-Br, (c) NiCoBP -I.
Figure S6 Electrochemical performances of the NiCoBP-Br GCE. (a) Current–time response of the NiCoBP-Br GCE at 0.55 V on successive additions of different amounts of GLU in 0.1 M NaOH. (b) Response time for NiCoBP-Br GCE after the addition glucose solution (c) A plot of electrocatalytic current of GLU versus its concentrations in the range of 0.5 µM to 6.065 mM. (d) Current–time response of the NiCoBP-Br GCE with the addition of 100 µM GLU, 5 µM AA, 5 µM DA, 5 µM UA, 5 µM NaCl, and 100 µM GLU into 0.1 M NaOH at 0.55 V.
Figure S7 CV curves of NiCoBP GCE in NaOH (0.1 M) when adding different concentrations of GLU.
Figure S8 CV curves of NiCoBP-I GCE in NaOH (0.1 M) when adding different concentrations of GLU.
Figure S9 Amperometric responses of the NiCoBP GCE at different potentials (from 0.40 to 0.55 V) with continuous addition of 100 μM glucose in 0.1 M NaOH.
Figure S10 Amperometric responses of the NiCoBP-I GCE at different potentials (from 0.40 to 0.55 V) with continuous addition of 100 μM glucose in 0.1 M NaOH.
Figure S11 (a, b) Current–time response of the NiCoBP GCE at 0.55 V on successive additions of different amounts of GLU in 0.1 M NaOH. (c) A plot of electrocatalytic current of GLU versus its concentrations in the range of 0.5 μM to 7.065 mM.

The NiCoBP GCE exhibited a linear relationship between current responses and GLU concentration from 0.5 to 7065.5 μM, whose linear regression equation was $I (\mu A) = 14.34685 + 0.0794C (\mu M)$, $R^2 = 0.9950$, the sensitivity was about 1123.28 μA mM$^{-1}$ cm$^{-2}$. The detection limit was as low as 0.104 μM with the S/N ratio of 3.
Figure S12 (a, b) Current–time response of the NiCoBP-I GCE at 0.55 V on successive additions of different amounts of GLU in 0.1 M NaOH. (c) A plot of electrocatalytic current of GLU versus its concentrations in the range of 0.5 μM to 6.065 mM.

The NiCoBP-I GCE exhibited a linear relationship between current responses and GLU concentration from 0.5 to 5065.5 μM, whose linear regression equation was $I (\mu A) = 15.8752 + 0.11465C (\mu M)$, $R^2 = 0.9950$, the sensitivity was about 1621.97 μA mM⁻¹ cm⁻². The detection limit was as low as 0.072 μM with the S/N ratio of 3.
Figure S13 Current–time response of the NiCoBP GCE with the addition of 100 μM GLU, 5 μM AA, 5 μM DA, 5 μM UA, 5 μM NaCl, and 100 μM GLU into 0.1 M NaOH at 0.55 V.
Figure S14 The stability of the response current for the NiCoBP GCE after the addition of GLU solution (100 μM) over 5000s.
Figure S15 Response time for NiCoBP GCE after the addition glucose solution.
Figure S16 Current–time response of the NiCoBP-I GCE with the addition of 100 μM GLU, 5 μM AA, 5 μM DA, 5 μM UA, 5 μM NaCl, and 100 μM GLU into 0.1 M NaOH at 0.55 V.
Figure S17 The stability of the response current for the NiCoBP-I GCE after the addition of GLU solution (100 μM) over 4000s.
Figure S18 Response time for NiCoBP-I GCE after the addition glucose solution.
Figure S19 XPS survey spectra of NiCoBP-Br before (red) and after (blue) cycling.
Table S1. Summary of electrochemical performance for as-prepared MOF samples.

<table>
<thead>
<tr>
<th>Electrodes</th>
<th>Detection limit (μM)</th>
<th>Linear range (mM)</th>
<th>Sensitivity (μA mM$^{-1}$ cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCoBP</td>
<td>0.104</td>
<td>0.0005–7.07</td>
<td>1123.28</td>
</tr>
<tr>
<td>NiCoBP-Br</td>
<td>0.0665</td>
<td>0.0005–6.07</td>
<td>1755.51</td>
</tr>
<tr>
<td>NiCoBP-I</td>
<td>0.072</td>
<td>0.0005–6.07</td>
<td>1621.97</td>
</tr>
</tbody>
</table>
Table S2. Comparison of electrochemical performance of recent non-enzymatic glucose sensing with MOF based materials.

<table>
<thead>
<tr>
<th>Electrodes</th>
<th>Detection limit (μM)</th>
<th>Linear range (mM)</th>
<th>Sensitivity (μA mM⁻¹ cm⁻²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical sheet-like Ni-BDC/GCE</td>
<td>6.68</td>
<td>0.01-0.8</td>
<td>636</td>
<td>1</td>
</tr>
<tr>
<td>Co-MOF</td>
<td>0.25</td>
<td>0.0005-8.06</td>
<td>219.67</td>
<td>2</td>
</tr>
<tr>
<td>Co-MOF/NF</td>
<td>0.0013</td>
<td>0.001-3</td>
<td>10886</td>
<td>3</td>
</tr>
<tr>
<td>NiCo-MOFNs</td>
<td>0.29</td>
<td>0.001–8</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Co₃(BTC)₂/rGO/GCE</td>
<td>0.33</td>
<td>0.001-0.33</td>
<td>1709</td>
<td>5</td>
</tr>
<tr>
<td>Nick-cobalt phosphate</td>
<td>0.4</td>
<td>0.002-4.47</td>
<td>302.99</td>
<td>6</td>
</tr>
<tr>
<td>NiCo-MOFNs</td>
<td>0.29</td>
<td>0.001-8</td>
<td>684.4</td>
<td>7</td>
</tr>
<tr>
<td>Cu@HHNs</td>
<td>1.97</td>
<td>0.005-3</td>
<td>1594.2</td>
<td>8</td>
</tr>
<tr>
<td>NiCoBP-Br</td>
<td>0.0665</td>
<td>0.0005-6.07</td>
<td>1755.5144</td>
<td>This work</td>
</tr>
</tbody>
</table>
References

5. S. Shahrokhian, M. Ezzati and H. Hosseini, Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates,
