Electronic supplementary information (ESI[†])

Opto-Mechano-Thermo-Sensitive Allochroic Luminescence Based on Coupled Dual Activators in Tantalate towards Multidimensional Stimulus Sensing

Rui Hu^{a,b,c}, Ying Zhang^d, Yan Zhao^a, Xusheng Wang^{a*}, Guorong Li^{b*} and Mingxue Deng^{b,c}

- a. Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- b. Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200080, China
- c. University of Chinese Academy of Sciences, Beijing 100049, China
- d. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

**Corresponding authors:*

E-mail: xs-wang@tongji.edu.cn (X. W.). E-mail: grli@sunm.shcnc.ac.cn (G. L.).

Fig. S1. (a) XRD pattern and Rietveld refinement of LiTaO₃:1.0%Er³⁺ sample. (b) Reflection spectra and (c) Kubelka–Munk plots with extrapolation of the bandgaps for LiTaO₃:1.0%Bi³⁺, LiTaO₃:1.0%Er³⁺, and LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺ phosphor.

Table S	51.	Exemplary	refinement	results	for	LiTaO3:1.0%Er3+	and
LiTaO ₃ :1.09	%Bi ³⁺ /	0.7%Er ³⁺ phosp	phor powder.				

	1.0% Er ³⁺	1.0%Bi ³⁺ /0.7%Er ³⁺
Space	R3c	R3c
a (Å)	5.1517	5.1552
c (Å)	13.7641	13.7768
c/a	2.6718	2.6724
$V(Å^3)$	316.352	317.085
Z	6	6

The diffuse reflectance spectra of $LiTaO_3$:1.0% Bi^{3+} , $LiTaO_3$:1.0% Er^{3+} , and

LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺ phosphor are shown in Fig. S1b. The spectra exhibit intense absorption band ranging from 200 to 280 nm corresponding to the matrix absorption. Bi³⁺

dopants produce an intense absorption band in the range of 280 to 380 nm, which is attributed to the ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition of Bi³⁺. Meanwhile, Er³⁺ codopants induce emerging peaks at 380 nm, 525 nm, 655 nm, and 980 nm, which are ascribed to the electron transitions from ground state to ${}^{4}G_{11/2}$, ${}^{2}H_{11/2}/{}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, and ${}^{4}I_{11/2}$, respectively. When codoped with Bi³⁺ ions, Er³⁺ ions obtain enhanced characteristic absorption peaks, while the absorption intensity of Bi³⁺ declines along with the introduction of Er³⁺ ions. The experimental bandgap can be deduced from our diffuse reflectance spectra (DRS) using the Kubelka-Munk representation, which

can define as $F(R) = \frac{(1-R)^2}{2R} = K/S$, where $F(R_{\infty})$ represents the Kubelka-Munk function, R, K, and S are reflection, absorption, and scattering parameter, respectively.¹ For bandgap determination, Tauc plots $(F(R)hv)^2 vs hv$ were employed as shown in Fig. S1c. The bandgap energy of both Bi³⁺-doped and Bi³⁺/Er³⁺-codoped samples was calculated ~4.79 eV from the extrapolation of line for $(F(R)hv)^2 = 0$, which is slightly low compared with that of Er³⁺-doped LiTaO₃ phosphor. Meanwhile, the energy of absorption edge was decreased to 3.88 eV by Bi³⁺ dopants.

Fig. S2. (a) PL excitation and emission spectra of LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺ phosphor. Comparison of PL excitation spectra between LiTaO₃:1.0%Er³⁺ and LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺ monitoring at (b) 430 nm and (c) 550 nm respectively. Down-conversion emission spectra of LiTaO₃:1.0%Bi³⁺/x%Er³⁺ (x = 0, 0.3, 0.5, 0.7, 1.0, and 1.5) under (d) 305 nm and (e) 380 nm excitation. (f) Concentration dependences of PL emission intensity at 430 nm ($\lambda_{ex} = 305$ nm) and 550 nm ($\lambda_{ex} = 380$ nm).

As for LiTaO₃:Bi³⁺/Er³⁺ sample, both the characteristic emission of Bi³⁺ and Er³⁺

(peaking at ~430 nm and 550 nm respectively) have two excitation bands located at ~250 nm and 305 nm as shown in Fig. S2a. Besides the broad excitation bands, there is also a sharp excitation peak of Er^{3+} emission (Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$ transition, peaking at 380 nm) in PL excitation spectrum of LiTaO₃:Bi³⁺/Er³⁺. As shown in Fig. S2b, the excitation band of Bi³⁺ at ~250 nm is attributed to the charge transfer band of host, meanwhile the stronger band at ~305 nm originates from ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition. Compared with Er^{3+} -doped LiTaO₃ sample, Bi³⁺ dopants introduce new excitation bands for the characteristic emission of Er^{3+} in the range of 200-350 nm. It proves that there is efficient energy transfer from Bi³⁺ to Er^{3+} ions resulting in noticeable down-conversion PL of Er^{3+} ions, when LiTaO₃:Bi³⁺/Er³⁺ is under UV irradiation. Upon 305 nm excitation, the PL spectrum of LiTaO₃:Bi³⁺/Er³⁺ extends from 350 to 600 nm centered at 430 nm. Specially, there is also significant emission peaks owing to ${}^{2}\text{H}_{11/2}/{}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$ transitions of Er³⁺ in PL spectra, which overlap with broad band of Bi³⁺ emitters (${}^{3}\text{P}_{1} \rightarrow {}^{1}\text{S}_{0}$). Nevertheless, the emission curve generated by 380 nm excitation only shows single-region peaks at 525 nm and 550 nm appearing in green. Furthermore, when the Er³⁺ content is below 1.0%, PL intensity elevates with the augment of *x* value under 305 nm and 380 nm excitation. Afterward, the intensity begins to weaken along with the increment of Er³⁺ ions, which can be attributed to concentration quenching effect

Fig. S3. (a) UC PL emission spectra of LiTaO₃:1.0%Er³⁺ and LiTaO₃:1.0%Bi³⁺/x%Er³⁺ (x = 0.3, 0.5, 0.7, 1.0, and 1.5) under 980 nm excitation. Inset is concentration dependence of emission intensity. (b) Dependence of the UC PL spectra on the 980 nm laser power. (c) Intensity dependence of green and red emission bands (${}^{2}\text{H}_{11/2}/{}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$ and ${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$ transitions of Er³⁺) on the laser power.

In contrast to down-conversion emission performance, the up-conversion emission of LiTaO₃:Bi³⁺/Er³⁺ is more sensitive to Er³⁺ content. Bi³⁺ ions can significantly improve the UC PL intensity of Er³⁺ ions, but samples with low Er³⁺ codoping content show more increment in intensity. In addition, its UC PL spectra have another two peaks located at 410 nm and 670 nm respectively, which are attributed to ${}^{2}\text{H}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$, ${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$ transition respectively.² The power dependent UC PL spectra suggest that the intensity has a positive correlation with excitation power. The n values which were calculated from logarithmic dependence power versus emitting intensity, prove that two-photon process contributes to

photostimulated Fig. **S4**. PL, long-persistent, and emission performance of LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺/0.5%Yb³⁺. (a)-(b) Down-conversion emission spectra of LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺ and LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺/0.5%Yb³⁺ under 305 nm and 380 nm excitation respectively. (c) Dependence of the UC PL spectra of LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺ on the 980 nm laser power, and (d) the emission intensity dependence on the laser power. (e) UC PL decay profiles at 550 nm and 660 nm upon 980 nm excitation. (f) Mechanism of multimode PL emission in diverse color for LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺. (g) Afterglow spectra of pre-irradiated LiTaO₃:Bi³⁺/Er³⁺, LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺. (h) Afterglow decay curves of preirradiated $LiTaO_3:Bi^{3+}/Er^{3+}$, $LiTaO_3:Bi^{3+}/Er^{3+}/Yb^{3+}$, and (i) the relationship of reciprocal afterglow intensity versus time. (j) UC PL and (k) PSL emission spectra of LiTaO₃:Bi³⁺/Er³⁺, LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺ sample upon 980 nm laser irradiation.

Yb³⁺ codopants obviously decrease the down-conversion emission intensity of Bi³⁺ and Er³⁺ ions in LiTaO₃ host, but can enhance the UC PL of Er³⁺ ions under 980 nm excitation. The negative effect of Yb³⁺ on down-conversion performance originates from the increasing trap density which can capture and store excited electrons leading to less radiative recombination of excited electrons and activators.⁴ Meanwhile, due to the energy transfer effect from Yb³⁺ to Er³⁺ ions, the UC PL intensity of sample enhances obviously. On the other hand, Yb³⁺ ions also improve the red emission in up-conversion emission process significantly, resulting in higher intensity ratio of red and green emission. When the pump power improves, the intensity ratio of red and green declines slightly, but all emissions are still attributed to two-photon process. All up-conversion emission lifetimes of Er³⁺ ions decline by half with introducing Yb³⁺ ions. Thus, the down-conversion PL mechanism of LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺ is similar to that of LiTaO₃:Bi³⁺/Er³⁺, while Yb³⁺ ions can increase red emission intensity of UC PL by enriching the population of ⁴F_{9/2} level via a suitable energy transfer (ET) process.⁵ Because of the increasing trap density induced by Yb³⁺ codopants, the afterglow intensity, afterglow lifetime, and PSL intensity show an apparent increment. The nonlinear dependence of reciprocal intensity versus decay time indicates that the trap depth of LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺ is also not in continuous distribution, and the long-persistent emission originates from two or more effective trap centers.

Fig. S5. (a) The fitted results of TL glow curve for pre-irradiated LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺. (b) The ML intensity curves of various samples under gradually changing load.

Table S2. TL parameters of $LiTaO_3$: 1.0% $Bi^{3+}/1.0\% Er^{3+}$.

Trap	T _A (K)	T _m (K)	T _B (K)	τ	δ	ω	μ_{g}	E(eV)
T _{Er}	306	327	348	22	20	42	0.486	0.643
T_{Bi}	343	363	384	20	21	41	0.510	0.894

In order to investigate the effect of different traps on ML, LPL, and PSL property, the TL curve of LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺ was decomposed into several peaks. Then a classical fitting peak shape method developed by Chen⁶ was introduced, the trap depths (*E*) were calculated from the glow-peak parameters according to the following equation:

$$E = [2.52 + 10.2(\mu g - 0.42)] \frac{\kappa B T_m^2}{\omega} - 2\kappa B T_m$$

(1)

where μ_g is symmetry factor, T_m is the maximum value of peak temperature and T_1 , T_2 are the temperature on either side of TL peak at half height respectively, κ is Boltzmann's constant. $\mu_g = \delta/\omega$ is the symmetrical geometrical factor, $\delta = T_2 - T_m$ is the half-width toward the falloff of the glow peak, $\omega = \delta + \tau$ is the total half-width, and $\Box \tau \Box$ is the half-width at the low-temperature side of TL peak, which can be obtained by formula calculation ($\tau = T_m - T_1$). The trap depths of $T_{\rm Er}$ and $T_{\rm Bi}$ traps are calculated as 0.643 eV, 0.894 eV, respectively.

Fig. S6. (a) Afterglow spectra of LiTaO₃:1.0%Bi³⁺/x%Er³⁺ (x = 0, 0.3, 0.5, 0.7, 1.0, and 1.5) after 305 nm irradiation for 3 min. (b)-(c) LPL decay curves monitored at 430 nm and 550 nm. (d) PSL emission spectra of LiTaO₃:1.0%Bi³⁺/x%Er³⁺ (x = 0, 0.3, 0.5, 0.7, 1.0, and 1.5) and LiTaO₃:1.0%Er³⁺ upon 980 nm stimulation.

Fig. S7. (a) TL glow curves of pre-irradiated LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺/0.5%Yb³⁺ after decay for a period of time. (b) TL glow curves of LiTaO₃:1.0%Bi³⁺/1.0%Er³⁺/0.5%Yb³⁺ after decay in the dark (1 min) or 980 nm stimulation (photo-stimulation for 30 s then decay for 30 s).

Yb³⁺ codopants improve the density of shallow traps in LiTaO₃ host obviously, thus the initial LPL intensity of LiTaO₃:Bi³⁺/Er³⁺/Yb³⁺ gains a significant enhancement. However, the decay rate of LPL emission is enhanced due to the worse resistance of shallow traps to thermal agitation. Whereas, Yb³⁺ ions improve the durability of charge carriers in overall traps under NIR stimulation, thus charge carriers in traps can be released at a slower rate via photo-stimulation.

Fig. S8. (a) Band structures of $LiTaO_3:Er^{3+}$; (b) total and partial density of states of $LiTaO_3:Er^{3+}$; (c) partial density of states of Er codopants.

Fig. S9. Temperature dependent down- (a) and up-conversion (b) PL emission spectra of $LiTaO_3:1.0\%Bi^{3+}/1.0\%Er^{3+}$ in the temperature range of 303-663 K, and (c)-(d) the relevant CIE chromaticity coordinates.

Fig. S10. (a) Down-conversion emission ($\lambda_{ex} = 380 \text{ nm}$) and (b) up-conversion emission ($\lambda_{ex} = 980 \text{ nm}$) spectra of LiTaO₃:1.0%Er³⁺ at 303 K and 663 K. (c) Temperature dependent XRD patterns of LiTaO₃:1.0%Er³⁺ powder.

References

[1] H. Li, R. Pang, G. Liu, W. Sun, D. Li, L. Jiang, S. Zhang, C. Li, J. Feng, H. Zhang,
Synthesis and Luminescence Properties of Bi³⁺-Activated K₂MgGeO₄: A Promising HighBrightness Orange-Emitting Phosphor for WLEDs Conversion. *Inorg. Chem.* 2018, 57,
12303-12311.

[2] A. Pandey, V. K. Rai, V. Kumar, V. Kumar, H. C. Swart, Upconversion Based
 Temperature Sensing Ability of Er³⁺-Yb³⁺Codoped SrWO₄:An Optical Heating Phosphor.
 Sensors and Actuators B: Chemical 2015, 209, 352-358.

[3] Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, Q. Wang, High Multi-photon Visible Upconversion Emissions of Er³⁺ Singly Doped BiOCl Microcrystals: A Photon Avalanche of Er³⁺ Induced by 980 nm Excitation. *Appl. Phys. Lett.* 2013, **103**, 231104.
[4] J. Ueda, S. Miyano, S. Tanabe, Formation of Deep Electron Traps by Yb³⁺ Codoping Leads to Super-Long Persistent Luminescence in Ce³⁺-Doped Yttrium Aluminum Gallium Garnet Phosphors. *ACS Appl. Mater. Inter.* 2018, **10**, 20652-20660.

[5] Q. Zhang, S. Yue, H. Sun, X. Wang, X. Hao, S. An, Nondestructive Up-conversion
Readout in Er/Yb Co-doped Na_{0.5}Bi_{2.5}Nb₂O₉-Based Optical Storage Materials for Optical
Data Storage Device Applications. *J. Mater. Chem. C* 2017, **5**, 3838-3847.

[6] R. Chen, Glow Curves with General Order Kinetics. J. Electrochem. Soc. 1969, 116, 1254-1257.