Electronic Supplementary Information (ESI) for

Water-tuned reversible spin transition with the largest hysteresis

loop in 3D Hofmann frameworks pillared by flexible ligands

Zhe Feng,^a Jiejie Ling,^a Huijie Song^a and Dun-Ru Zhu^{*a,b} ^a College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P.R. China. ^b State Key Laboratory of Coordination Chemistry, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, P.R. China * Correspondence e-mail: zhudr@njtech.edu.cn

Contents

1. The reversible transformation between $1.4.5H_2O$ -p and $1S2$
2. The FT-IR spectra of $1.4.5H_2O-c$, 1 , $2.4.5H_2O-c$, 2 and rehydrated $1.4.5H_2O-p$ and
2 ·4.5H ₂ O-p·····S2
3. The TGA curves of $1.4.5H_2O$ -c, 1, $2.4.5H_2O$ -c, 2, rehydrated $1.4.5H_2O$ -p and
2 ·4.5H ₂ O-p·····S3
4. The PXRD patterns of $1.4.5H_2O-c$, $2.4.5H_2O-c$, 1 , 2 , rehydrated $1.4.5H_2O-p$ and
2 ·4.5H ₂ O-p·····S4
5. Molecular structures of $1.4.5H_2O$ -c and $2.4.5H_2O$ -c at 296 and 100 K······S5
6. Selected bond distances and angles and hydrogen bond interactions for $1.4.5H_2O$ -c
and 2 ·4.5H ₂ O-c at 296 and 100 K SS8
7. Second magnetic measurements for the hysteretic SCO behaviors of $1.4.5H_2O$ -c and
2 ·4.5H ₂ O-c·····S9
8. Comparison of the spin transition parameters of some representative 3D Hofmann
SCO frameworks······S9

1. The reversible transformation between 1.4.5H₂O-p and 1

Fig. S1 The reversible transformation between the $1.4.5H_2O$ -p and 1.

2. The FT-IR spectra of 1·4.5H₂O-c, 1, 2·4.5H₂O-c, 2, rehydrated 1·4.5H₂O-p and 2·4.5H₂O-p

Fig. S2 FT-IR spectra of (a) $1.4.5H_2O$ -c and (b) 1.

Fig. S3 FT-IR spectra of (a) $2.4.5H_2O$ -c and (b) 2.

Fig. S4 FT-IR spectra of the rehydrated $1.4.5H_2O-p$ (a) and $2.4.5H_2O-p$ (b).

3. The TGA curves of 1·4.5H₂O-c, 1, 2·4.5H₂O-c, 2, rehydrated 1·4.5H₂O-p and 2·4.5H₂O-p

Fig. S5 TGA curves of (a) $1.4.5H_2O$ -c and 1 and (b) $2.4.5H_2O$ -c and 2.

Fig. S6 TGA curves of rehydrated $1.4.5H_2O-p$ (a) and $2.4.5H_2O-p$ (b).

4. The PXRD patterns of 1·4.5H₂O-c, 2·4.5H₂O-c, 1, 2, rehydrated 1·4.5H₂O-p and 2·4.5H₂O-p

Fig. S7 PXRD patterns of (a) $1.4.5H_2O$ -c and (b) $2.4.5H_2O$ -c.

Fig. S8 PXRD patterns of 1·4.5H₂O-c, 1 and rehydrated 1·4.5H₂O-p.

Fig. S9 PXRD patterns of 2.4.5H₂O-c, 2 and rehydrated 2.4.5H₂O-p.

5. Molecular structures of 1·4.5H₂O-c and 2·4.5H₂O-c at 296 and 100 K

Fig. S10 The asymmetric unit of 1·4.5H₂O-c at 296 K (a) and 100 K (b), and
2·4.5H₂O-c at 296 K (c) and 100 K (d) with 50% thermal ellipsoids probability, all hydrogen atoms are omitted for clarity.

Fig. S11 The coordinated environment of Fe^{2+} ion in $1.4.5H_2O$ -c at 296 K (a) and 100 K (b), and $2.4.5H_2O$ -c at 296 K (c) and 100 K (d) (the disorder atoms are linked by

the hollow lines and all hydrogen atoms are omitted for clarity).

Fig. S12 (a) The hydrogen bond interactions in 1.4.5H₂O-c at 296 K and (b) the hydrogen-bonding networks formed in the 1D channels of 1.4.5H₂O-c (the disorder atoms are linked by the hollow lines).

Fig. S13 (a) The hydrogen bond interactions in **2**·4.5H₂O-c at 296 K and (b) the hydrogen-bonding networks formed in the 1D channels of **2**·4.5H₂O-c (the disorder atoms are linked by the hollow lines).

Fig. S14 The hydrogen bond interactions in (a) $1.4.5H_2O$ -c and (b) $2.4.5H_2O$ -c at 100 K (the disorder atoms are linked by the hollow lines).

6. Selected bond distances and angles and hydrogen bond interactions for

1·4.5H₂O-c and 2·4.5H₂O-c at 296 and 100 K

1·4.5H ₂ O-c				2 ·4.5H ₂ О-с			
296 K		100 K		296 K		100 K	
Fe1-N1	2.139(4)	Fe1-N1	2.140(4)	Fe1-N1	2.148(3)	Fe1-N1	1.941(4)
						Fe1-N2 ⁱⁱ	1.938(4)
Fe1-N2	2.210(6)	Fe1-N2	2.215(5)	Fe1-N2	2.210(4)	Fe1-N3	1.989(4)
Pt1-C1	1.981(5)	Pt1-C1	1.989(5)	Pd1-C1	2.001(4)	Pd1-C1/C2	1.990(5)
C1-N1	1.150(7)	C1-N1	1.144(6)	C1-N1	1.136(5)	C1-N1	1.158(7)
N2-C2	1.330(10)	N2-C2	1.324(9)	N2-C2	1.311(7)	C2-N2	1.160(7)
N2-C6	1.317(11)	N2-C6	1.333(10)	N2-C6	1.347(7)	N3-C7	1.350(7)
C7-N3	1.362(15)	C7-N3	1.403(14)	C7-N3	1.384(11)	C8-N4	1.355(8)
C7-O1	1.177(13)	C7-O1	1.190(12)	C7-O1	1.196(9)	C8-O1	1.206(8)
Fe…Fe ⁱⁱⁱ	10.318(2)	Fe…Fe ⁱⁱⁱ	10.315(2)	Fe…Fe ⁱⁱⁱ	10.361(2)	Fe…Fe ⁱⁱⁱ	10.082(2)
Fe…Fe ^{iv}	15.657(2)	Fe…Fe ^{iv}	15.679(2)	Fe…Fe ^{iv}	15.682(2)	Fe…Fe ^{iv}	15.154(2)
N1-Fe1-N2	88.27(16)	N1-Fe1-N2	91.58(15)	N1-Fe1-N2	87.92(12)	N1-Fe1-N3	92.54(16)
N1-Fe1-N2 ⁱ	91.74(16)	N1-Fe1-N2 ⁱ	88.42(15)	N1-Fe1-N2 ⁱ	92.08(12)	N1-Fe1-N3 ⁱ	88.29(16)
N1-Fe1-N1 ⁱⁱ	89.65(2)	N1-Fe1-N1 ⁱⁱ	90.85(4)	N1-Fe1-N1 ⁱⁱ	88.98(17)	N1-Fe1-N1 ⁱ	88.3(2)
N1-Fe1-N1 ⁱ	90.35(2)	N1-Fe1-N1 ⁱ	89.1(2)	N1-Fe1-N1 ⁱ	91.02(17)	N1-Fe1-N2 ⁱⁱ	91.93(18)
C1-N1-Fe1	157.78(4)	C1-N1-Fe1	157.5(4)	C1-N1-Fe1	159.42(3)	C1-N1-Fe1	168.1(4)
C2-N2-Fe1	122.89(5)	C2-N2-Fe1	119.0(5)	C2-N2-Fe1	123.96(4)	C3-N3-Fe1	121.3(3)
C6-N2-Fe1	119.37(5)	C6-N2-Fe1	122.5(5)	C6-N2-Fe1	119.46(4)	C7-N3-Fe1	122.1(3)
C2-N2-C6	117.74(6)	C2-N2-C6	118.5(6)	C2-N2-C6	116.58(5)	N1-C1-Pd1	174.8(4)
N1-C1-Pt1	176.07(4)	N1-C1-Pt1	176.6(4)	N1-C1-Pd1	175.32(3)	N2-C2-Pd1	173.4(4)
C4-C7-N3	112.97(8)	C4-C7-N3	113.4(7)	C4-C7-N3	116.02(6)	C5-C8-N4	112.6(6)
C4-C7-O1	121.61(8)	C4-C7-O1	121.6(7)	C4-C7-O1	121.41(7)	C5-C8-O1	124.2(6)

Table S1 Selected bond distances (Å) and angles (°) for $1\cdot4.5H_2O\text{-c}$ and $2\cdot4.5H_2O\text{-c}$ at 296 and 100 K

Symmetry codes: 1·4.5H₂O-c at 296 K: i) 1-*x*, *y*, 1-*z*; ii) *x*, 1-*y*, *z*; iii) 1+*x*, 1+*y*, *z*; iv) 1+*x*, *y*, *z*-1; 100 K: i) 1-*x*, *y*, *-z*; ii) *x*, -*y*, *z*; iii) 1+*x*, 1+*y*, *z*; iv) *x*-1, *y* 1+*z*; 2·4.5H₂O-c at 296 K: i) -*x*, *y*, 1-*z*; ii) *x*, 1-*y*, *z*; iii) 1+*x*, 1+*y*, *z*; iv) 1+*x*, *y*, *z*-1; 100 K: i) 1-*x*, *y*, 1/2-*z*; ii) *x*, 1+*y*, *z*; iv) 1+*x*, *y*, *z*; iv) 1-*x*, 2-*y*, -*z*.

D–H…A	d(D–H)	d(H…A)	d(D…A)	∠D–H…A			
1 ·4.5H ₂ O-c (296 K)							
C5–H5····O1 ⁱ	0.93	2.45	3.351(7)	164			
N3–H3····O1W ⁱⁱ	0.90	1.91	2.757(7)	156			
O1W–H1WA…O2WA	0.85	2.54	3.357(4)	163			
O1W–H1WB…O1 ⁱ	0.85	2.15	2.987(5)	169			
O1WA-H1WD…O2WA	0.85	1.84	2.603(9)	148			
O2W−H2WA…O1W ⁱⁱ	0.85	1.99	2.629(6)	131			
	1.4	4.5H ₂ O-c (100	K)				
C3–H3····O1 ⁱ	0.93	2.46	3.358(6)	164			
N3–H3A…O1W ⁱⁱⁱ	0.90	1.94	2.772(2)	153			
O2W−H2WA…O1 ^{iv}	0.85	1.83	2.669(2)	171			
O2W–H2WB…O1W ⁱⁱ	0.85	2.01	2.847(2)	171			
O1W····O3W			2.695(3)				
	2.4	4.5H ₂ O-c (296)	K)				
C5–H5····O1 ⁱ	0.93	2.45	3.357(13)	164			
N3–H3····O1W	0.90	1.92	2.777(6)	158			
O1W–H1WA…O1 ⁱⁱ	0.85	2.43	3.017(4)	127			
O1W–H1WB…O2W ⁱⁱ	0.85	2.59	3.151(5)	124			
O2W–H2WA…O1	0.85	1.70	2.52(5)	162			
2 ·4.5H ₂ O-c (100 K)							
N4–H4····O1W	0.89	2.18	2.784(7)	124			
O3W–H3WB…O1W ⁱⁱ	0.85	1.71	2.562(6)	177			
O3W–H3WA…O1	0.85	2.08	2.926(6)	176			
C6–H6····O1 ⁱ	0.95	2.54	3.447(3)	161			
O1W–H1WB…O4W ⁱⁱⁱ	0.85	1.95	2.529(6)	125			

Table S2 Hydrogen-bond geometry (Å, °) for 1.4.5H₂O-c and 2.4.5H₂O-c at 296 and 100 K

O2W…O4W	2.457(2)
O4W…O3W	2.595(7)

Symmetry codes: 1·4.5H₂O-c at 296 K: i) 1-*x*, 1-*y*, -*z*; ii) 1+*x*, *y*, *z*; at 100 K: i) 1-*x*, -*y*, 1-*z*; ii) 1-*x*, *y*, 1-*z*; iii) -*x*, 1-*y*, 1-*z*; iii) *x*, 1-*y*, 1-*z*; iii) *x*, 1-*y*, 1-*z*; iii) *x*, 1-*y*, 0.5+*z*; iii) *x*, 1-*y*, *z*.

7. Second magnetic measurements for the hysteretic SCO behaviors of $1.4.5H_2O-c$ and $2.4.5H_2O-c$

Fig. S15 Variable temperature magnetic susceptibility $(\chi_M T)$ for (a) $1.4.5H_2O$ -c and (b) $2.4.5H_2O$ -c measured again in the range of hysteresis loop (black: cooling; red: heating; inset: $\partial(\chi_M T)/\partial T$ showing the $T_{1/2}$ values).

8. Comparison of the spin transition parameters of some representative 3D Hofmann SCO frameworks

Table S3 Critical temperature $(T_{1/2})$ and hysteresis width (ΔT) of some representative 3D Hofmann SCO frameworks [FeLM(CN)₄]·G and [FeL{M'(CN)₂}₂]·G with the rigid pillars except hep (M - Ni) Pt Pd: $M' = \Delta g$, Δu : L = pillar ligand: G = quest molecule)

opii (M – Ni, Pi, Pu, M – Ag, Au, L – pinar ligand, G – guest molecule)							
L	Μ	G	$T_{1/2}^{\downarrow}$ (K)	$T_{1/2}^{\uparrow}(\mathbf{K})$	$\Delta T(\mathbf{K})$	Ref.	
bpe	Ag		120	215	95	1	
dpb	Au	0.7naphthalene	141	214	73	2	
pz	Pt	0.5thiourea	213	277	64	3	
bph	Pt	4.5H ₂ O	90(88)	150	60(62)*	this work	
bpac	Pt	0.5bpac	251	300	49	4	
bpy	Ni	$x(CD_3)_2CO$	103	148	45	5	
pz	Pd	2.5H ₂ O	233	266	33	6	
bpac	Pd	0.5bpac	283	315	32	4	
bph	Pd	4.5H ₂ O	105	135(136)	30(31)*	this work	
bpb	Pt	nitrobenzene	210	237	27	7	
pz	Ni	$2H_2O$	280	305	25	6	
2,5-bpp	Au	<i>s</i> BuOH	186/171	209/189	23/18	8	
azpy	Pd		181	202	21	9	
bpac	Pt	$H_2O \cdot 0.5 bpac$	301	322	21	4	
bpd	Au		158/128	179/149	21/21	10	
pz	Pt	2H ₂ O	220	240	20	6	
bpan	Au		242/143	252/163	10/20	11	
4-abpt	Ag	xEtOH	264	281	17	12	

0701	Dt		175	100	15	0
azpy	Γι -		1/5	190	15	9
dpe	Pt	0.5dpe	135	150	15	13
bpn	Ag	azobenzene	182/171/132/	184/177/147/	2/6/15/	14
			118	128	10	
azpy	Pt	H ₂ O	275	285	10	9
azpy	Pd	H ₂ O	287	296	9	9
dpoda	Ag	1.5naphthalene	250/228/190/	252/232/194/	2/4/4/6	15
			181	187		
dpt	Pt	$1.5H_2O \cdot dpt$	210/127	212/132	2/5	16
Hbpt	Pt	0.5Hbpt·0.5MeOH·2.5H ₂ O	244/158/124	249/158/124	5/0/0	17
bipytz	Au		273	277	4	18
bpac	Pd	$H_2O \cdot 0.5 bpac$	307	310	3	4
dpe	Pt	$H_2O \cdot 0.5 dpe$	275/243	275/243	0/0	13
dpni	Ag	4CH ₃ CN	196/160	196/160	0/0	19

* The data were obtained from the second magnetic measurements.

References

- 1 V. Niel, M. C. Muñoz, A. B. Gaspar, A. Galet, G. Levchenko and J. A. Real, *Chem. Eur. J.*, 2002, **8**, 2446-2453.
- 2 J.-Y. Li, C.-T. He, Y.-C. Chen, Z.-M. Zhang, W. Liu, Z.-P. Ni and M.-L. Tong, J. *Mater. Chem. C.*, 2015, **3**, 7830-7835.
- 3 F. J. M. Lara, A. B. Gaspar, D. Aravena, E. Ruiz, M. C. Muñoz, M. Ohba, R. Ohtani, S. Kitagawa and J. A. Real, *Chem. Commun.*, 2012, **48**, 4686-4688.
- 4 C. Bartual-Murgui, N. A. Ortega-Villar, H. J. Shepherd, M. C. Muñoz, L. Salmon, G.

Molnár, A. Bousseksou and J. A. Real, J. Mater. Chem., 2011, 21, 7217-7222.

- 5 K. Hosoya, S. Nishikiori, M. Takahashi and T. Kitazawa, *Magnetochemistry*, 2016, 2, 8.
- 6 V. Niel, J. M. Martinez-Agudo, M. C. Muñoz, A. B. Gaspar and J. A. Real, *Inorg. Chem.*, 2001, 40, 3838-3839.
- 7 L. Piñeiro-López, M. Seredyuk, M. C. Muñoz and J. A. Real, *Chem. Commun.*, 2014, 50, 1833-1835.
- 8 J.-Y. Li, Y.-C. Chen, Z.-M. Zhang, W. Liu, Z.-P. Ni and M.-L. Tong, *Chem. Eur. J.*, 2015, **21**, 1645-1651.
- 9 G. Agustí, S. Cobo, A. B. Gaspar, G. Molnár, N. O. Moussa, P. A. Szilágyi, V. Pálfi, C. Vieu, M. C. Muñoz, J. A. Real and A. Bousseksou, *Chem. Mater.*, 2008, 20, 6721-6732.
- 10 H.-T. Xu, Z.-L. Xu and O. Sato, *Microporous Mesoporous Mater.*, 2014, **197**, 72-76.
- 11 M. Meneses-Sánchez, L. Piñeiro-López, T. Delgado, C. Bartual-Murgui, M. C.

Muñoz, C. P. Chakraborty and J. A. Real, J. Mater. Chem. C., 2020, 8, 1623-1633.

- 12 W. Liu, Y.-Y. Peng, S.-G. Wu, Y.-C. Chen, M. N. Hoque, Z.-P. Ni, X.-M. Chen and M.-L. Tong, *Angew. Chem. Int. Ed.*, 2017, 56, 14982-14986.
- 13 F. J. M. Lara, A. B. Gaspar, M. C. Muñoz, M. Arai, S. Kitagawa, M. Ohba and J. A. Real, *Chem. Eur. J.*, 2012, **18**, 8013-8018.
- 14 K.-P. Xie, Z.-Y. Ruan, B.-H. Lyu, X.-X. Chen, X.-W. Zhang, G.-Z. Huang, Y.-C. Chen, Z.-P. Ni and M.-L. Tong, Angew. Chem. Int. Ed., 2021, 60, 27144-27150.
- 15 C.-J. Zhang, K.-T. Lian, G.-Z. Huang, S. Bala, Z.-P. Ni and M.-L. Tong, *Chem. Commun.*, 2019, **55**, 11033-11036.
- 16 K.-T. Lian, W.-W. Wu, G.-Z. Huang, Y. Liu, S.-G. Wu, Z.-P. Ni and M.-L. Tong, *Inorg. Chem. Front.*, 2021, 8, 4334-4340.
- 17 F.-L. Liu, D. Li, L.-J. Su and J. Tao, Dalton Trans., 2018, 47, 1407-1411.
- 18 J. E. Clements, J. R. Price, S. M. Neville and C. J. Kepert, Angew. Chem. Int. Ed., 2014, 53, 10164-10168.
- 19 Y. Meng, Y.-J. Dong, Z. Yan, Y.-C. Chen, X.-W. Song, Q.-W. Li, C.-L. Zhang, Z.-P. Ni and M.-L. Tong, *Cryst. Growth. Des.*, 2018, **18**, 5214-5219.