Thiacalixarene-based {Co/Fe}₁₆ molecular clusters: the bimetallic

synergistic effect for enhanced oxygen evolution reduction

Xinxin Hang^{a,b}, Xiaoju Wang^a, Meiling, Wang,^b Mengwei Chen^b, Yanfeng Bi^{*b}

^a School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, Jiangsu 225002, (P. R. China)

^b School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001 (P. R. China) **Additional Figures**

Scheme S1. Molecular structures of H_4TC4A -SO₂ (a) and H_2BTTAB (b).

Figure S1. The structure of Co₄-(TC4A-SO₂) PSBU.

Figure S2. The coordination modes of (a) Co_4 -(TC4A-SO₂) unit, (b) BTTAB ligand in Co_{16} and (c) (Co/Fe)₄-(TC4A-SO₂) unit in {CoFe}₁₆-b. Symmetry operators for equivalent positions are as follows: A = x, 1-y, 1-z for Co₁₆ and A = x, y, 2-z for {CoFe}₁₆-b. Based on the single-crystal X-ray diffraction analysis, the ratio of Co and Fe is 3:2 in {CoFe}₁₆-b.

Figure S3. (a) $\{Co_{16}\}\$ architecture (in literature) assembled from Co_4 -(TC4A-SO₂) SBUs and BTTAB. (b-d) The coordination modes of Co_4 -(TC4A-SO₂) units.

Figure S4. The coordination modes of two Fe_4 -(TC4A-SO₂) units (a) and BTTAB ligand (b) in Fe_{16} .

Figure S5. The packing diagrams of Co_{16} (a), Fe_{16} (b) and $\{CoFe\}_{16}$ -b (c).

Figure S6. PXRD patterns of Co₁₆, {CoFe}₁₆-a, {CoFe}₁₆-b, and {CoFe}₁₆-c.

Figure S7. PXRD pattern of Fe_{16} .

Figure S8. FT-IR spectra of Co₁₆, Fe₁₆, {CoFe}₁₆-a, {CoFe}₁₆-b, and {CoFe}₁₆-c.

Figure S12. LSV curves of {CoFe}₁₆-b/CP at different loading.

Figure S13. Cyclic voltammetry (CV) curves of Co_{16}/CP (a), $\{CoFe\}_{16}-a/CP$ (b), $\{CoFe\}_{16}-b/CP$ (c), $\{CoFe\}_{16}-c/CP$ (d) and Fe_{16}/CP (e); (f) *i-t* curve of the $\{CoFe\}_{16}-b/CP$ catalyst recorded at 1.60 V vs RHE.

Figure S14. High-resolution N 1s (a), O 1s (b), and S 2p (c) XPS spectra of assynthesized {CoFe}₁₆-b and {CoFe}₁₆-b after catalysis (after stabilized LSV).

Figure S15. Scanning electron microscope (SEM) elemental mapping images of {CoFe}₁₆-b at different stage: (a) {CoFe}₁₆-b-as-prepared, (b) {CoFe}₁₆-b after OER catalysis.

Figure S16. Energy-dispersive X-ray spectroscopy (EDS) analysis of {**CoFe**}₁₆-**b** at different stage: (a) {**CoFe**}₁₆-**b**-as-prepared, (b) {**CoFe**}₁₆-**b** after OER catalysis.

	C0 ₁₆	Fe ₁₆	{CoFe} ₁₆ -b
Formula*	C ₂₂₄ H ₂₁₆	$C_{224}H_{216}$	$C_{224}H_{216}N_{64}$
	$N_{64}Co_{16}O_{52}S_{16}$	$N_{64}Fe_{16}O_{52}S_{16}$	$Co_{9.60}Fe_{6.40}O_{52}S_{16}$
Formula Weight*	6092.44	6035.27	6072.72
Crystal System	Tetragonal	Monoclinic	Tetragonal
Space Group (no.)	I4/m (No. 87)	C2/c (No. 15)	<i>I4/m (No.</i> 87)
Temperature (K)	150 K	150 K	150 K
a(Å)	37.4109(13)	51.070(3)	37.212(3)
$b(\text{\AA})$	37.4109(13)	17.5178(11)	37.212(3)
$c(\text{\AA})$	16.2505(7)	52.146(3)	15.8033(13)
α (°)	90	90	90
β (°)	90	94.784(2)	90
γ (°)	90	90	90
$V(Å^3)$	22743.8(19)	46489(5)	21883(4)
Ζ	2	4	2
$D_{\rm c} ({\rm g/cm^{-3}})^{*}$	0.890	0.862	0.920
$\mu ({ m mm}^{-1})$	0.689	0.602	0.685
F (000)	6224	12352	6195
Total Data	36053	132196	51005
Unique data	7443	34333	10093
<i>R</i> _{int}	0.070	0.0752	0.067
GOF on F^2	1.03	1.00	1.026
$R_1^a [I \ge 2 \sigma(I)]$	0.0559	0.0599	0.0611
wR_2^{b}	0.1933	0.1798	0.2115

Table S1. Selected Crystal Data for Clusters Co_{16} , Fe_{16} and $\{CoFe\}_{16}$ -b.

 $\overline{{}^{a}R_{1}=\Sigma||F_{0}|-|F_{c}||/\Sigma|F_{0}|; {}^{b}wR_{2}=\{\Sigma[w(F_{0}{}^{2}-F_{c}{}^{2})^{2}]/\Sigma[w(F_{0}{}^{2})^{2}]\}^{1/2}}$

C0 ₁₆							
Band	Distance	r	Value	Band	Distance	r	Value
Co(1)-O(3)	2.071(4)	1.69	0.359	Co(3)-O(7)	2.069(5)	1.69	0.361
Co(1)-O(1)	2.088(3)	1.69	0.343	Co(3)-N(8)	2.099(4)	1.84	0.497
Co(1)-O(1) ^b	2.088(3)	1.69	0.343	Co(3)-N(8) ^b	2.099(4)	1.84	0.497
Co(1)-N(2)	2.108(4)	1.84	0.485	Co(3)-O(2)	2.106(4)	1.69	0.327
Co(1)-N(2) ^b	2.108(4)	1.84	0.485	Co(3)-O(2) ^b	2.106(4)	1.69	0.327
Co(1)- O(9)	2.171(4)	1.69	0.274	Co(3)-O(9)	2.190(4)	1.69	0.260
valence			2.288	valence			2.268
Co(2)-N(9) ^a	2.070(4)	1.84	0.537				
Co(2)-O(5)	2.071(4)	1.69	0.359				
Co(2)-N(3)	2.074(4)	1.84	0.531				
Co(2)-O(1)	2.075(3)	1.69	0.355				
Co(2)-O(2)	2.077(3)	1.69	0.353				
Co(2)-O(9)	2.2045(14)	1.69	0.250				
valence			2.386				
Symmetry Cod	le a: 1-y, x, z; b	: x, y,1-	-z; c: 1-y	, x, 1-z.			
			{CoF	e} ₁₆ -b			
Band	Distance	r	Value	Band	Distance	r	Value
Co(1)-O(3)	2.058(5)	1.69	0.332	Fe(1)-O(3)	2.055(12)	1.73	0.487
Co(1)-O(1)	2.094(4)	1.69	0.305	Fe(1)-N(1) ^a	2.102(10)	1.86	0.444
Co(1)-O(1) ^a	2.094(4)	1.69	0.305	Fe(1)-N(1)	2.102(10)	1.86	0.444
Co(1)-N(1)	2.113(4)	1.84	0.527	Fe(1)-O(1) ^a	2.107(10)	1.73	0.426
Co(1)-N(1) ^a	2.114(5)	1.84	0.527	Fe(1)-O(1)	2.107(10)	1.73	0.426
Co(1)-O(9)	2.164(5)	1.69	0.302	Fe(1)-O(9)	2.225 (5)	1.73	0.276
valence		2.299	valence			2.504	
Co(2)-N(2)	2.060(5)	1.84	0.565	Fe(2)-O(2)	2.056(7)	1.73	0.429
Co(2)-N(6) ^b	2.070(5)	1.84	0.531	Fe(2)-N(6) ^b	2.065(7)	1.86	0.581
Co(2)-O(1)	2.070(5)	1.69	0.363	Fe(2)-O(1)	2.071(7)	1.73	0.399
Co(2)-O(5)	2.076(5)	1.69	0.356	Fe(2)-O(5)	2.082(6)	1.73	0.387
Co(2)-O(2)	2.093(5)	1.69	0.331	Fe(2)-N(2)	2.096(7)	1.86	0.517
Co(2)-O(9)	2.238(4)	1.69	0.226	Fe(2)-O(9)	2.225(5)	1.73	0.267
valence		2.373	valence			2.581	
Co(3)-O(7)	2.073(5)	1.69	0.338	$\hat{Fe}(3)$ -O(7)	2.054(13)	1.73	0.449
Co(3)-N(7) ^b	2.116(4)	1.84	0.498	Fe(3)-O(2)	2.108(9)	1.73	0.393
Co(3)-N(7) ^c	2.116(4)	1.84	0.498	Fe(3)-O(2)	2.109(9)	1.73	0.393
$Co(3)-O(2)^a$	2.122(4)	1.69	0.296	Fe(3)-N(7) ^b	2.131(8)	1.86	0.444
Co(3)-O(2)	2.122(4)	1.69	0.296	$Fe(3)-N(7)^{c}$	2.131(8)	1.86	0.444
Co(3)-O(9)	2.151(5)	1.69	0.299	Fe(3)-O(9)	2.165(13)	1.73	0.300
valence			2.226	valence			2.423
Symmetry Code a: x, y,2-z; b: y,1-x, z; c: y, 1-x, 2-z.							

Table S2. Selected bond distances (Å) and BVS calculations for $Co_{16},$ $\{CoFe\}_{16}\text{-}b,$ and Fe_{16}

Fe ₁₆							
Band	Distance	r	Value	Band	Distance	r	Value
Fe(1)-O(5)	2.060(3)	1.73	0.414	Fe(5)-O(17)	2.097(3)	1.73	0.394
Fe(1)-N(10)	2.119(4)	1.86	0.497	Fe(5)-O(13)	2.118(3)	1.73	0.354
Fe(1)-O(4)	2.131(3)	1.73	0.342	Fe(5)-N(14)	2.125(4)	1.86	0.489
Fe(1)-O(25)	2.138(3)	1.73	0.336	Fe(5)-O(26)	2.166(3)	1.73	0.311
Fe(1)-N(1)	2.161(4)	1.86	0.443	Fe(5)-N(5)	2.182(4)	1.86	0.419
Fe(1)-O(1)	2.197(3)	1.73	0.286	Fe(5)-O(16)	2.211(3)	1.73	0.275
valence			2.318	valence			2.242
Fe(2)-O(2)	2.057(3)	1.73	0.418	Fe(6)-O(19)	2.095(3)	1.73	0.377
Fe(2)-N(11)	2.100(4)	1.86	0.523	Fe(6)-O(13)	2.103(3)	1.73	0.369
Fe(2)-O(7)	2.109(3)	1.73	0.363	Fe(6)-N(6)	2.110(4)	1.86	0.509
Fe(2)-N(30) ^a	2.123(4)	1.86	0.491	Fe(6)-O(14)	2.119(3)	1.73	0.353
Fe(2)-O(1)	2.146(3)	1.73	0.328	Fe(6)-N(26)	2.123(4)	1.86	0.491
Fe(2)-O(25)	2.264(3)	1.73	0.239	Fe(6)-O(26)	2.190(3)	1.73	0.292
valence		2.362	valence			2.391	
Fe(3)-O(9)	2.062(3)	1.73	0.412	Fe(7)-O(21)	2.088(3)	1.73	0.384
Fe(3)-O(25)	2.135(3)	1.73	0.338	Fe(7)-O(15)	2.106(3)	1.73	0.366
Fe(3)-O(2)	2.145(3)	1.73	0.329	Fe(7)-N(23) ^a	2.118(4)	1.86	0.498
Fe(3)-N(19)	2.147(4)	1.86	0.460	Fe(7)-N(25)	2.030(5)	1.86	0.481
Fe(3)-N(29) ^a	2.166(4)	1.86	0.437	Fe(7)-O(14)	2.139(3)	1.73	0.335
Fe(3)-O(3)	2.198(3)	1.73	0.285	Fe(7)-O(26)	2.2532(3)	1.73	0.246
valence		2.263	valence			2.309	
Fe(4)-O(4)	2.047(3)	1.73	0.429	Fe(8)-O(23)	2.076(3)	1.73	0.397
Fe(4)-N(18)	2.088(4)	1.86	0.540	Fe(8)-O(15)	2.091(3)	1.73	0.381
Fe(4)-O(11)	2.107(3)	1.73	0.365	Fe(8)-N(22) ^a	2.105(4)	1.86	0.516
Fe(4)-O(3)	2.110(3)	1.73	0.362	Fe(8)-N(15)	2.110(4)	1.86	0.509
Fe(4)-N(2)	2.127(4)	1.86	0.486	Fe(8)-O(16)	2.110(3)	1.73	0.362
Fe(4)-O(25)	2.308(3)	1.73	0.212	Fe(8)-O(26)	2.616(2)	1.73	0.262
valence			2.394	valence			2.426
Symmetry Code a: 3/2-x,3/2-y,1-z.							

Note: BVS calculations reveal that all the ions in these clusters are divalent.

Table S3. ICP-AES analysis of catalysts	s {CoFe} ₁₆ -a,	{CoFe} ₁₆ -b, and	{CoFe} ₁₆ -c.
---	----------------------------	------------------------------	--------------------------

	Со	Fe	Co: Fe	Experimental
Catalysts	(ppm)	(ppm)	(molar ratio)	value
{CoFe} ₁₆ -a	1362.0	56.55	24.10 : 1	Co _{15.4} Fe _{0.6}
{CoFe} ₁₆ -b	977.6	635.1	1.54 : 1	Co _{9.7} Fe _{6.3}
{CoFe} ₁₆ -c	639.5	910.9	1:1.42	Co _{6.4} Fe _{9.6}