Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Efficient Ce³⁺ → Tb³⁺ energy transfer pairs toward thermal-stability and internal quantum

efficiency close to unity

Quwei Ni,^a Jiansheng Huo,^{*,b} Jiachun Liu^a, Haojun Yan^a, Qijian Zhu,^a Jieying Li,^a Chenggang

Long ^c and Qianming Wang,*,^a

a Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of

Chemistry, South China Normal University, Guangzhou 510006, P.R. China.

b Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangdong

Province Key Laboratory of Rare Earth Development and Application, Institute of Resources

Utilization and Rare Earth Development, Guangzhou 510651, P.R. China.

c Ruide Technologies (Foshan) Inc. Foshan, Guangdong, 528311, China

Corresponding Authors

- * E-mail: jshuoscnu@126.com (J. H.).
- * E-mail: <u>qmwang@scnu.edu.cn</u> (Q. W.).

- Figure S1. X-ray diffraction patterns of typically synthesized CLSO: x^{0} Ce³⁺ (x = 0.01, 0.03, 0.05, 0.08, 0.10 and 0.15) samples together with the standard data (ICSD No.59293) for comparison.
- **Figure S2.** The ratio of the integral emission energy of Ce³⁺ and Tb³⁺ in the overall emission energy.
- Figure S3. The integrated luminescence intensity and PL spectra (a), and XRD patterns (b) evolution of CLSO:8%Ce³⁺, 60%Tb³⁺ exposed to ambient atmosphere for different times.
- Table S1. Rietveld refinement, crystallographic and structure parameters of the representative

 sample of CLSO:8%Ce³⁺, 60%Tb³⁺.
- **Table S2.** Comparison of luminescence properties (λ_{ex} (nm), IQE, EQE, thermal stability (I_{423K}/I_{298K}), LE and color gamut) for the CLSO:8%Ce³⁺, 60%Tb³⁺ and several other reported green-emitting phosphors
- Table S3 RGB CIE chromaticity coordinates of the fabricated pc-WLED device and the NTSC standard.

Figure S1

Figure S2

Figure S3

Table	S1
-------	----

formula	$Ca_{3}Lu_{2}Si_{6}O_{18}$:8% Ce^{3+} , 60% Tb^{3+}
crystal system	monoclinic
space group	C2/c
$\alpha/\beta/\gamma$ (deg)	$lpha = eta = \gamma = 90$
cell parameters	<i>a</i> = 13.3135(9) Å, <i>b</i> = 7.6986(9) Å, <i>c</i> = 14.7229(6) Å,
	$V = 1509.062(2) \text{ Å}^3, Z = 4$
Reliability factors	$R_{wp} = 9.52\%, R_p = 5.73\%, x^2 = 4.22$

Table S	S2
---------	----

	λ _{ex}			I423K/I298K	LE	Color	
Samples	(nm)	IQE	EQE	(%)	(lm/W)	Gamut	Ref.
					× /	(%NTSC)	
$Ca_2GdHf_2Al_3O_{12}:Ce^{3+}, Tb^{3+}$	408	82.7	60.6	48	27.4		1
$La_3Si_8N_{11}O_4:Ce^{3+}, Tb^{3+}$	360	76.3	46.7	90	4.4		2
$Sr_4Al_{14}O_{25}:Ce^{3+}, Tb^{3+}$	348	47.04		82.21	21.87	85.34	3
$Ca_3Gd_2Si_6O_{18}:Ce^{3+}, Tb^{3+}$	325	95.1	80.5	92	15.73		4
$Ca_2YHf_2Al_3O_{12}:Ce^{3+}, Tb^{3+}$	408	78.5	56	43.3	29.25		5
Ba ₂ Y ₃ (SiO ₄) ₃ F:Ce ³⁺ , Tb ³⁺	355	83.12		82	24.4		6
$La_2Si_2O_7:Ce^{3+}, Tb^{3+}$	332	95.6		89			7
Sr ₃ Lu ₂ (BO ₃) ₄ :Ce ³⁺ , Tb ³⁺	340	77.5	34.8	70			8
$Ca_2TbZr_2Al_3O_{12}:Ce^{3+}$	410	60		55	15.71	61	9
$Ca_2LuHf_2Al_3O_{12}:Ce^{3+}, Tb^{3+}$	408	77.1	55.8	62	29.35		10
$SrB_2O_4:Ce^{3+}, Tb^{3+}$	319	54.7		59.3			11
$Ba_2Lu_5B_5O_{17}$:Ce ³⁺ , Tb ³⁺	348	86		90	18.81		12
Ba ₃ GdNa(PO ₄) ₃ F:Ce ³⁺ , Tb ³⁺	273	65.5		94			13
$[Mg_{1.25}Si_{1.25}Al_{2.5}]O_3N_3:Ce^{3+}, $$Tb^{3+}$$	335	41.14		65	5.279		14
Ca2ZrSi4O12:Ce ³⁺ , Tb ³⁺	322	59.2	32.7	72.5			15
$Ca_2LuZr_2(AlO_4)_3:Ce^{3+}, Tb^{3+}$	408	69		48	25		16
$Na_2Ca_3Si_2O_8:Ce^{3+}, Tb^{3+}$	330	85.5		86	6		17
LaPO ₄ :Ce ³⁺ , Tb ³⁺	290	96	86				18
$Na_{1.8}Mg_{0.9}Si_{1.1}O_4:Ce^{3+}, Tb^{3+}$	340	82		49.9			19
Sr ₅ B ₃ O ₉ F:Ce ³⁺ , Tb ³⁺	365	57		32			20
$\begin{array}{c} La_{8}Ba_{2}(Si_{4}P_{2}O_{22}N_{2})O_{2}{:}Ce^{3+},\\ Tb^{3+}\end{array}$	290	89		91.2			21
$Ca_{2}LaHf_{2}Al_{3}O_{12}:Ce^{3+}, Tb^{3+}$	408	80	59.2	27	17.56		22
$Sr_2MgB_2O_6:Ce^{3+}, Tb^{3+}$	323	66.39	48.92	75.3	6.19	87	23
$Y_5Si_3O_{12}N:Ce^{3+}, Tb^{3+}$	358	85		80			24
CaAl ₄ O ₇ :Ce ³⁺ , Tb ³⁺	350	92.55	71.02	68.5			25

$Ba_3Lu_2B_6O_{15}:Ce^{3+}, Tb^{3+}$	373	51		54			26
[Sr,BaSiO ₄]:Eu ²⁺	430	78		>50	18.45		27
β -Sialon:Eu ²⁺	450	96.5	71.3		136	96	28
CLSO:Ce ³⁺ , Tb ³⁺	326	99.7	76.6	86.8	31.4	90.2	This work

Table S3

Name	R	G	В
NTSC	(0.67, 0.33)	(0.21, 0.71)	(0.14, 0.08)
Fabricated pc-WLEDs	(0.6892, 0.3108)	(0.2936, 0.6655)	(0.1481, 0.0665)

Reference

- X. Huang, J. Liang, S. Rtimi, B. Devakumar and Z. Zhang, Ultra-high color rendering warm-white light-emitting diodes based on an efficient green-emitting garnet phosphor for solid-state lighting, *Chem. Eng. J.*, 2021, 405, 126950.
- H.-B. Xu, W.-D. Zhuang, R.-H. Liu, Y.-H. Liu, T.-L. Zhou, Y. Cho, W. Gao, C.-P. Yan, N. Hirosaki and R.-J. Xie, Significantly enhanced photoluminescence and thermal stability of La₃Si₈N₁₁O₄:Ce³⁺,Tb³⁺ via the Ce³⁺→Tb³⁺ energy transfer: a blue-green phosphor for ultraviolet LEDs, *RSC Adv.*, 2018, 8, 35271-35279.
- 3 H. Li, Y. Liang, S. Liu, W. Zhang, Y. Bi, Y. Gong, Y. Chen and W. Lei, Highly efficient greenemitting phosphor Sr₄Al₁₄O₂₅:Ce,Tb with low thermal quenching and wide color gamut upon UVlight excitation for backlighting display applications, *J. Mater. Chem. C*, 2021, **9**, 2569-2581.
- 4 D. Wu, Y. Xiao, L. Zhang, X. Dong, S. Zhao, W. Zhou, Q. Lu and J. Zhang, Highly efficient and thermally stable luminescence of Ca₃Gd₂Si₆O₁₈:Ce³⁺,Tb³⁺ phosphors based on efficient energy transfer, *J. Mater. Chem. C*, 2020, **8**, 17176-17184.
- 5 S. Wang, B. Devakumar, Q. Sun, J. Liang, L. Sun and X. Huang, Highly efficient near-UV-excitable Ca₂YHf₂Al₃O₁₂:Ce³⁺,Tb³⁺ green-emitting garnet phosphors with potential application in high color rendering warm-white LEDs, *J. Mater. Chem. C*, 2020, **8**, 4408-4420.

- 6 D. Wu, W. Xiao, L. Zhang, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo and J. Zhang, Simultaneously tuning the emission color and improving thermal stability via energy transfer in apatite-type phosphors, *J. Mater. Chem. C*, 2017, 5, 11910-11919.
- W. Ma, J. Zhang, X. Zhang, X. Zhang, Y. Liu, S. Liao and S. Lian, Highly efficient and thermal stable La₂Si₂O₇:Ce³⁺,Tb³⁺,Eu³⁺ phosphors: emission color tuning through terbium bridge, *J. Alloys Compd.*, 2019, **785**, 53-61.
- Y. Zhang, X. Zhang, H. Zhang, Z.-C. Wu, Y. Liu, L. Ma, X. Wang, W.-R. Liu and B. Lei, Enhanced absorption of Sr₃Lu₂(BO₃)4:Ce³⁺,Tb³⁺ phosphor with energy transfer for UV-pumped white LEDs, *J. Alloys Compd.*, 2019, **789**, 215-220.
- 9 T. Zhang, N. Li, Z. Yu, P. Du, B. Tian, Z. Li, Y. Tian, Violet-light-excitable super-narrow band green emitting phosphor for high-quality white LEDs, *J. Lumin.*, 2020, **225**, 117318.
- 10 N. Ma, W. Li, B. Devakumar, Z. Zhang and X. Huang, Utilizing energy transfer strategy to produce efficient green luminescence in Ca₂LuHf₂Al₃O₁₂:Ce³⁺,Tb³⁺ garnet phosphors for high-quality near-UV-pumped warm-white LEDs, *J. Colloid Interface Sci.*, 2021, **601**, 365-377.
- S. Sun, L. Wu, H. Yi, L. Wu, J. Ji, C. Zhang, Y. Zhang, Y. Kong and J. Xu, Energy transfer between Ce³⁺ and Tb³⁺ and the enhanced luminescence of a green phosphor SrB₂O₄:Ce³⁺, Tb³⁺, Na⁺, *Opt. Mater. Express*, 2016, 6, 1172-1185.
- 12 Y. Xiao, Z. Hao, L. Zhang, X. Zhang, G.-H. Pan, H. Wu, H. Wu, Y. Luo and J. Zhang, An efficient green phosphor of Ce³⁺ and Tb³⁺-codoped Ba₂Lu₅B₅O₁₇ and a model for elucidating the high thermal stability of the green emission, *J. Mater. Chem. C*, 2018, **6**, 5984-5991.
- 13 Z. Yang, Y. Yu, G. Zhang, C. Ji, H. Bu, D. Xu and J. Sun, Luminescence properties and energy transfer of co-doped Ba₃GdNa(PO₄)₃F:Ce³⁺,Tb³⁺ green-emitting phosphors, *J. Mater. Sci.: Mater. Electron.*, 2018, **29**, 7203-7212.
- 14 J. Li, X. Zhou, J. Ding, X. Zhou and Y. Wang, Mechanism analysis of a narrow-band ultra-bright green phosphor with its prospect in white light-emitting diodes and field emission displays, J. Mater. Chem. C, 2019, 7, 2257-2266.
- 15 X. Zhang, B. Liu, S. Cao, L. Dong, J. Wang and L. Liu, Multisite-occupation properties, spectral characteristics and energy-transfer behaviors of Ca₂ZrSi₄O₁₂:Ce³⁺,Tb³⁺ phosphor for NUV-based LEDs, *Opt. Mater.*, 2022, **124**, 111986.
- 16 L. Sun, J. Liang, S. Wang, Q. Sun, B. Devakumar and X. Huang, Bright cyan-to-green color-tunable

emissions from Ce³⁺/Tb³⁺ co-activated garnet phosphors for high-color-quality solid-state lighting, *Mater. Today Energy*, 2020, **17**, 100487.

- 17 W. Lü, H. Xu, J. Huo, B. Shao, Y. Feng, S. Zhao and H. You, Tunable white light of a Ce³⁺,Tb³⁺,Mn²⁺ triply doped Na₂Ca₃Si₂O₈ phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer, *Dalton Trans.*, 2017, 46, 9272-9279.
- 18 R. Iwasaki and K. Kajihara, Negligible concentration quenching in photoluminescent nanocrystals with high photoactive rare-earth concentrations: silica–(Tb,Ce)PO₄ transparent glass-ceramic green phosphors, *J. Mater. Chem. C*, 2021, **9**, 2701-2705.
- H. Zhou, H. Zhang, X. Ye, X. Tong, J. Han and X. Zhang, Near-UV excited green-emission enhancement by efficient energy transfer in Na_{1.8}Mg_{0.9}Si_{1.1}O₄:Ce³⁺,Tb³⁺ phosphor for solid-state lighting applications. *Opt. Laser Technol.*, 2022, **150**, 107950.
- S. Yang and S. Park, Promising Green Sr₅B₃O₉F: Ce³⁺/Tb³⁺/Na⁺ phosphors for NUV-executable LED applications, *J. Alloys Compd.*, 2020, 834, 155094.
- L. Dong, L. Zhang, Y. Jia, B. Shao, W. Lü, S. Zhao and H. You, Synthesis, Luminescence and application of novel europium, cerium and terbium-doped apatite phosphors, *CrystEngComm*, 2019, 21, 6226-6237.
- 22 N. Ma, W. Li, B. Devakumar, X. Huang and A. F. Lee, An energy transfer strategy for highly luminescent green-emitting Ce³⁺/Tb³⁺ codoped Ca₂LaHf₂Al₃O₁₂ garnet phosphors in white lightemitting diodes, *Mater. Today Chem.*, 2022, 24, 100773.
- 23 Q. Dong, J. Yang, J. Cui, F. Xu, F. Yang, J. Peng, F. Du, X. Ye and S. Yang, A narrow-band ultrabright green phosphor for LED-based applications, *Dalton Trans.*, 2020, 49, 1935-1946.
- 24 S. A. Khan, N. Z. Khan, W. W. Ji, L. Ali, H. Abadikhah, L. Hao, X. Xu, S. Agathopoulos, Q. Khan and L. Zhu, Luminescence properties and energy transfer in Ce³⁺/Tb³⁺ co–doped Y₅Si₃O₁₂N oxynitride phosphors, *Dyes Pigm.*, 2019, **160**, 675-682.
- 25 Y. Li, Y. Yin, T. Wang, J. Wu, J. Zhang, S. Yu, M. Zhang, L. Zhao and W. Wang, Ultra-bright green-emitting phosphors with an internal quantum efficiency of over 90% for high-quality WLEDs, *Dalton Trans.*, 2021, **50**, 4159-4166.
- 26 X. Huang, H. Guo, L. Sun, T. Sakthivel and Y. Wu, A high-efficiency, broadband-excited cyanemitting Ba₃Lu₂B₆O₁₅:Ce³⁺,Tb³⁺ phosphor for near-UV-pumped white light-emitting diodes, *J. Alloys Compd.*, 2019, **787**, 865-871.

- 27 X. Zhang, X. Tang, J. Zhang, M. Gong, An efficient and stable green phosphor SrBaSiO₄:Eu²⁺ for light-emitting diodes, *J. Lumin.*, 2010, **130**, 2288–2292.
- 28 S. Li, L. Wang, D. Tang, Y. Cho, X. Liu, X. Zhou, L. Lu, L. Zhang, T. Takeda, N. Hirosaki and R.-J. Xie, Achieving high quantum efficiency narrow-band β-sialon:Eu²⁺ phosphors for highbrightness LCD backlights by reducing the Eu³⁺ luminescence killer, *Chem. Mater.*, 2018, **30**, 494-505.